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ABSTRACT W7

This report summarizes much of the work that has done in the fielé/;f stability
theory with regards to the generation of Liapunov functions. The emphasis of the
report has been to survey and discuss the work of American engineers and mathematicians
in this area. But since most of the work was motivated by Russian mathematicians
and engineers, this report also includes a sizable discussion of the Russian contri-
butions. Reference is also made to the contributions due to mathematicians in
England, Japan and Italy. Under separate cover, the writers of this report submit
a sizable list of references in the stability field and a summary of the theorems
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and definitions which are important in the analysis of stability problems;géf
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LIST OF SYMBOLS

(most symbols ape defined where they are used in the report and will not be

repeated here)

V =

I

rt

t

rt

or a candidate for a Liapumov function.

x|

€ [a,
€ (a,
€ (a,
c A

usually denotes a scalar function, or functional which is a Liapunov function

= usually denotes the Euclidean norm of an n-dimensional vector,

defined as:

1
[xlz + .o +x:' :l /?

ti] meaus a & t & D.
b:] means @ < t < b,
b) means a < t < b.

means that element a is a member of set
transpose of matrix A
conjugate tramspose of matrix A.
time derivative of the wvector function, x

Euclidean n-space.

A.

x(t).

The class of functioms having continuous n-th order partial

derivatives.

gradient of the scalar function V.
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WORK OF KRASOVSKII, MANGASARIAN, CHANG, INGWERSON AND SZEGO

SUMMARY

This section considers two important theorems of Krasovskii and the
generalizations which were considered by others, based on Krasovskii's work.
We present the work of Mangasarian, the kinetic Liapunov function of
Chang, the modified Liapunov theory of Ingwerson and the ''generating
V - function” of Szego. Also, we include a compendium of examples at

the end of the section.

INTRODUCTION

In 1954, Krasovskii published an important result concerning the
global stability of a system of differential equations. This result in
itself was not as significant as the work which Krasovskii motivated
throughout the "differential equation community'. Krasovskii's theorem
dealt with autonomous differential equations whose right sides were con-
tinuously differentiable.

In 1957, Krasovskii considered nonautonomous systems with right sides
which were continuously differentiable and with large initigl disturbances.

Chang, in 1961, introduced his kinetic Liapunov function which is a
Liapunov function of the first derivatives of the state variable. This
formulation had been anticipated by Krasovskii's work. The use of this
function leads to sufficient conditions for asymptotic stability in the
large for nonlinear, nonautonomous systems.

In 1963, Mangasarian extended Krasovskii's work to cover nonautonomous,
nondifferentiable cases. In this work, the properties of convex functions

were used in determining stability requirements.
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Ingwerson's work, 1961, modified the original Liapunov stability
criterion. His method of generating Liapunov functions consisted of
solving a matrix equation in closed form, modifying the result, and then per-
forming a type of double integration. His method is well motivated,
can often be carried out analytically and often gives excellent results.

In 1962, Szego considered the stability of nonlinear autonomous
systems with the nonlinearity representable in polynomial form. Szegg
considers "generating V - functions" of the form V(x) = x; A(X)X,
where A is a symmetric matrix function of the state variable. The elements
of A, ajj (x4, xj), can be computed in such a way as to obtain V of the wanted

form. Particular attention is given to studying limit cycles of systems.

KRASOVSKII'S WORK

From references @,é] we have the following statement of Krasovskii's
Theorem. This theorem considers a free, stationary, dynamic system

described by

£ = £(x),
f@=0, (1)
where f has continuous first partial derivatives. Also, we define F = F(x)
to be the Jacobian matrix of £(x); thus, F = [},fi@)}
*J
Theorem

H) (i) Equations (1) describe a free, stationary, dynamic system,
(ii) £ has continuous first partial derivationms,
A
(ii1) F(® =F +Fr £ — € I for any & > 0 in a neighborhood

of x =0,

C) then x = 0 is asymptotically stable in the large.




Proof
The candidate which is chosen for a Liapunov function is V = i £
The corresponding time derivative of V is
V=»ff +£.f = (& £+ £ (Fx)

> s

T~
£ - € £ f.

[}

£, @+ DE = £,
By hypothesis (ii), we know that a Taylor's expansion of f£r1£f in some

neighborhood of x = 0 gives

L 2
VE - €f,.£<€ —€ [x) £0.

S
] Le 3 . 3
It remains toashownthat V is positive definite and tends to infinity

with // 5”_. oo -

Let ¢ be a constant vector, ¢ y‘ 0.

{c(g;os Xél}

Integrating along the ray, we have

£i(0) = *2‘; [fl e }fl(om ] J

=

The set of vectors

is a ray connecting the origin with c.

Suppose that f(c) is O for some ¢ 75 0. Then

1 n
e £(0) = eifie) = [ Z I ACON
T Z J ' T =

i=1

< GIIE'N <0,

is positive definite since £ =0

which is a contradiction. Hence V = frf

if and only if x = 0. Also, the above argument shows that
with X ——m oo , for any fixed

Xp £ — — oo
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vector x # 0. This means that at least one component of f tends to
=0 in absolute value as //_)g // tends to  ©€ ; this completes
the proof of Krasovskii's theorem.
In the above proof, a more general Liapunov function could be used;
such as,

V=f, A £,

where A 1s a symmetric matrix. The time derivative of this V is

V=f QAF + E A £=-£BE,

T
where B = - (AE + Fp A) is positive definite.
Also, in reference (3], the statement and proof of Krasovskii's
theorem is given in slightly different form. We will repeat this in the

following paragraph.

Theorem
H) (i) £ in equation (1) has continuous first partials,
A
(ii) F has negative eigenvalues for all x,

C) x = 0 is completely stable.
Proof
We take as a candidate for a Liapunov functiomn, V = X pX; thus, as

2
”x” > o0 5 V ——— oo - The time derivative of V is

V=Xpx + xpx = £, 0x+x .

The scalar product of x with YV is

@ » = 2, E® + L@ x + 2, E B ox

=V + 20 Eqp+ B x.
Thus,
@) -V=x,E+ B x
A
=x.F x <0,
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since g has negative eigenvalues for all x. Because it can be shown that
. ~
4 —L——( . x = (V) . x-V
/o= ® =
we then conclude that the gradient of {j Vv “ ” 'E is always directed

toward the origin. Therefore, V is negative definite since V is of higher

[
order than ﬂ X ” and since V(0) = 0. This proves that x =0 is a

completely stable equilibrium point.

In summary, we see that Krasovskii's Theorem is limited in application
because of the demand that £ have continuous first partials and that
equation (1) describes an autonomous system. But this theorem has influenced
the work of others; such as, Ingwerson's work which appears later in this
section, Schultz's and Gibson's work which appears in the variable gradient
section of this report and Mangasarian's work which will be the next topic
of discussion in this section. In the coﬁpendium of examples at the end of
this section we give some applications of the above theorems.

MANGASARIAN'S WORK

The main results of Mangasarian's work [6] are the sufficient conditions for

the (1) stability, (2) uniform asymptotic stability in the large and (3)
instability of the equilibrium point x = 0 of the system of differential
equations:

x = £(t, ¥

£(t, 9 =0.
The sufficient conditions are obtained by using the stability and
instability criteria of Liapunov and properties of concave and convex

t

functions. The system given by (1) is an n_ order nonlinear system

where 0 € t <« o0 . According to Massera [Z], the stability

(1)
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criteria and the various modifications of Liapunov theory hold if f is
piecewise continuous in (x, t) space. The discontinuities of f must lie on
sufficiently smooth manifolds; and f must be such that for any given (x, t)
there corresponds at least one function of t, x =y (t, X, , ty), defined,
continuous, and with piecewise continuous derivatives with respect to t
for all t >/ to, which satisfies the equations in (1), except at the
points of discontinuities.

The results are presented in the form of concave and convex scalar
functions, such as,

@ =x7f (5,0 (2)
where the function ¢(§) in (2) depends oﬁ the n-dimensional vector x. Before
"going on" with the stability problem, we will consider some of the pro-
perties of concave and convex functions. For simplicity, we will discuss
some of the results and properties of convex functions of scalar variables
as presented by Beckenbach in [8] .

A real function f(x), defined in the interval a ¢ x < b, is said to be

convex provided that for all X and X5, with a < X1 < X < b, and for all

>\ satisfying 0 & >\ < 1, we have

U-N £ (x) NG > £ [ -Dxg + Axp) . )
A convex function is necessarily continuous for a < x <« b. Geometrically,
the condition of convexity is that each arc of the curve y = f(x) lies

nowhere above the chord joining the end points of the arc. If f//(x) exists

at each point of the interval, then a necessary and sufficient condition

that f(x) be convex is that f”(x) > 0 fora < x <& b. If the strict

inequality in (3) holds throughout, we say that f£(x) is strictly convex.

Similar definitions hold for concave functions. That is, f£f(x) is concave

if and only if Z -f(x) } is convex.
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We will now state some other important properties of convex functions
which will be useful in the interpretation of Mangasarian's theorems.

) If £(x) and g(x) are convex functions in the interval a < x < b,
then £(x) + g(x) and max Zf(x), g(x)} are convex over a < x < b,
as is cf(x) if ¢ > O. |

(ii) The limit of a convergent sequence of convex functions is convex;
also, if it is finite, so is the upper envelope of a family of
convex functions.

(1i1) A convex function has a right-hand and left-hand derivative at each
point of (a, b). The right-hand is greater than or equal to the
left-hand derivative and both are not decreasing functions. These
two derivatives at a point are equal except for a denumerable set
of points.

(iv) In the segment of (a, b) outside the subinterval (x;, x»), the graph
lies nowhere below the line through le, f(xl)g and {xz, f(xz)} .

W) If for fixed xj and Xy in (a, b) the sign of equality in (3) holds at

a single interior point of the subinterval (xj,x;), then the sign
of equality holds throughout (x; , x9).

Some simple examples of convex functions are given below:
(1) |x - al is convex; its graph is V-shaped.

(1) g(x) = 2 |x| +|X- 1]+ |x =~ 2} is a continuous graph which

consists of a succession of line-segments.
(iii)For the g(x) in (ii), the function max {xz, g(x)‘} is convex.
(iv) By using the derivative test, we can show that for x > O,

1
the functions {xlog x}and {log / x’iare convex.
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We now return to the scalar function of vector x in (2). It is

assumed that ¢(§) is defined over a convex region. A convex region
is a set of points, n-vectors, such that for every pair of points
x; and X, in the set, the "line segment" x X ,1is contained in the set.

If for all vectors x; and X, in the convex region of definition of

)ﬁ (x), the inequality

@M Fap + AP SP-N) m + Ax “)
holds for 0 % >\ < 1, then ?{@ is called a convex function.
The function ¢ (x) is concave if the inequality sign in (4) is reversed.

For strictly convex (concave) functions the equality sign in (4) holds

only for >\ = 0, >\ = 1, or x] = X. Convexity and concavity imply con-
tinuity in the interior of the convex region of definite but not necessarily
differentiability. But if % (x) is twice continuously differentiable, then
sufficient conditions for convexity, concavity, strict convexity and strict

concavity of (x) are that the symmetric Jacobian matrices,

PLE 2N
9"1 ax , be positive semidefinite, negative semidefinite,

positive definite and negative definite, respectively for all values of X in
region of definition of 75

Since the system in (1) is in general a nonautonomous systam, a potential
Liapunov function will also be a function of both t and x. The following
definitions) [{])concerning definiteness of V(t, x) do not assume that V is
continuous and has continuous first partial derivatives. The scalar function

V(t, x) is positive definite if for 0 £ t < o0 , (i) V(t, x) > 0

for x # 0, (1) V(t, 0O =0, and (ii1) Lim inf |, 5)} > 0 for

t— oo

X # 0. The function V(t, x) is negative definite if for 0 € t < 0,

(1) V(t, x) < 0forx # 0, (1i) V(t, O =0, and (iii) lim sup V(t,x) <O

t—» oo
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for x ‘7'6 0. The function is said to have an infinitely small upper boqnd if, given

€ > 0, there exists a S ? 0 such that |\/| < € for allt 2 0 and
H X ” < cS‘ . When V has continuous first partials in t and x, we have along
the solutions of (1)

V(®) =2, YV +23V =£ Yy + Jy
at

at
NV, =(dv,...,33v\|.
where - 6;:? §;n~>
Mangasarian considers three lemmas, 1, 2 and 3, which are used in proving
his main theorems 1, 2 and 3, respectively. These lemmas are given below:
Lemma 1. Let f(t, x) be continuous in x at x =0 for 0 £ t < o0

and let f(t, 0) =0 for 0 € t < o0, If %p £(t, ©) is a concave function

of x for 0 £ ¢ < oo, then x; £(t, ¥) £ 0 for 0 £ t < oo .

Lemma 2. Let f(t, x) be continuous inx at x =0 for 0 €t < oo,

Lim sup {gT_f_(t,gc)} .

t —» o0
If xp £(t, x) is a strictly concave function of x for 0 € t < <o and if

let f(t, Q) =0 for 0 €t < <o and 1et76(§)

either (I) ')‘— x <0 for x ;é 0, or (II) ')L (x) is strictly concave in x,

then X f(t, x) is negative definite.

Lemma 3. Let f(t, x) be continuous inx at x = 0 for 0 £ t < oo,

let £(t, 0) =0 for 0 £ t < oo, and let '}L ) = Lim inf Z_)gTi(t,gg) .
t — o0

If %, £(t, x) is a strictly convex function of x for 0 £ t < oo and if
either (1) ')b (x) > 0 for x 75 0, or (II) 7L (x) is strictly convex in X,

then x¢ £(t, x) is positive definite.

Also, Mangasarian makes use of the theorems of Liapunov and Massera. They are:
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Liapunov's Stability Theorem

If a positive definite scalar function V(t, X) with continuous first
partials in t and x exists for which ‘; < 0, then the point x = 0 is a
gtable equilibrium point of system (1).

Massera's Theorem

1f a scalar function V(t, x) with continuous first partials in t and x
exists which is positive definite, tends to infinity with //_>_<_ // , has
an infinitely small upper bound, and is such that V(t, x) is negative definite,

then x =0 1is a uniformly, asymptotically stable point in the large of

system (1).

Liapunov's Instability Theorem

If a function V(t, x) with continuous first partials in t and x exists
which is positive definite, has an infinitely small upper bound and is such
)
that V is positive definite, then x = O is unstable.

We will now state the main theorems of Mangasarian, along with

appropriate notes about the proofs.

Theorem 1 (Stability)

Let £(t, x) be continuous in x at x =0 for 0 < t < S0 and let
£(t, 9) =0 for 0 & t < oo . If xp £(t, x) is a concave function of x
for 0 € t < <o, then the point x = 0 is a stable equilibrium point of
the system (1).

Notes About the Proof

A Liapunov function, V(x, t) = Xp X, is considered. Thus,

V = 2xy é = 2_}3T_f_(t, x). From Liapunov's Stability Theorem and the

hypotheses in this theorem, the conclusion follows.
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Corollary 1
If £(t, 0) =0 for 0 £ t < oo and if the function £(t, x) is a twice
continuously differential function of x for 0 € t € o and || x ” < oo R
then the point x = Q is a stable equilibrium point of (1) provided that

the matrix [ :' is negative semidefinite for 0 £ t < =© and
X4 Qx

2] < oo -

Theorem 2 (Uniform Asymptotic Stability in the Large)

Let £(£, x) be continuous in x at x =0 for 0 £ t < oo 5

let £(t, 0) =0 for 0 < t < oo ;and let Y (P =lim sup xp £(t, %).

t—» o0

If xp £(t, x) is a strictly concave function of x for 0 £ t < o©  and if
either (I) '}L ®x < 0 for x # 0, or (II) "}é (x) is strictly concave in x,

then x = 0 is a uniformly, asymptotically stable point in the large of the system

given by equation (1).

Notes About the Proof

The Liapunov function given by V(t, x) = xq x is positive definite, tends to
infinity with " X “ , and has an infinitely small upper bound. The time
derivative ‘-I = 2 _15,1.3.:_ =2 _Jg.rj_(t, X) is negative definite by Lemma 2. Thus,

the conclusion follows by Massera's Theorem.

Examples
-t
The equation x = - x is guch that x = 0 is not an asymptotically stable

point. From %y f£(t, x) we have the following for)é (x):

-t
')L(x) = lim sup §T£(t, E)} = |im sup - £ xzz = 0.

t—» oo t —= oo

Thus, 7L (x) does not satisfy either (I) or (II).
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) -t
Another example is the system x=-(1+€ )x , for which x = 0

is an asymptotically stable point in the large, as shown by Theorem 2. In this

case ’>Z/ (x) is

-t
'>L(x) = Limsup {-(l+e)x2=-x2,

t —» oo

which satisfies both (I) and (II) in Theorem 2.

Corollary 2
Let f(t, 0 =0 for 0 £t < o0 , let

74 ® = iiisuzo{.}s.rf(t, .&)} , and let £ (t, x)

be a twice continuously differentiable function of x for 0 £t < 00

If the matrix [325.1' £(t, © is negative definite for: 0 <t < oo
Dxi QXJ

and "5” < o0 , and if either (I) "}L(_g) < oo for x -#-0 s

or (II) ')L (x) is twice continuously differentiable, and the

matrix ?2 V(x) is negative definite for //_:5// < oo >
ax§ IXj
then the point x = 0 is a uniformly, asymptotically stable point in the large

of the system (1).

Theorem 3 (Instability)

Let £(t, x) be continuous in x at x = 0 for o £t < o0
let £(t, 0) =0 for 0 £t < oo and let }4(5)'5 Lim inf §T£(t,§)} .
t— o0
If xq £(t, %) is a strictly convex function of x for 0 £ t < oo and if

either (I). ')4 x) > 0 for x 76 0, or (II) }L (x) is strictly convex in Xx,
then x = Q is an unstable equilibrium point of the system (1).

Notes About the Proof

Consider the function V(t, X) = x.px, which is positive definite and has an
infinitesimally small upper bound. By Lemma 3, \.7 = 2 xp £(t, x) 1s positive

definite. The conclusion follows by Liapunov's Instability Theorem.
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Coroliary 3
Let f(t, 0) =0 for 0 & t < ©o0© , let ‘)(»(_:_c_)-z Lim inf {_)ﬁTj_(t, g},

t — o0
and let £(t, x) be a twice continuously differentiable function of x for 0 < t

< o0 . If the matrix DZ xp £(t, 25):| is positive definite for 0 <

axi oxj ]
t < <0 and H§”< oo ,andifeither(I)}é(g) > 0 for x #g,or
(1I1) ‘}L (x) is twice continuously differentiable, and the matrix A2 ¥
Ixj Ixj
is positive definite for 0 < t < oo , then x = 0 is an unstable

equilibrium point of (1).

Mangasarian's Theorem 2 V.S. Krasovskii's Theorem

Theorem 2 differs with Krasovskii's work because of the different choices
for the Liapunov functions in the two theorems. The differences can be summa-
rized in the following way:

(a) Krasovskii's theorem is for autonomous cases while Theorem 2 is for non-
autonomous systems.
(b) Krasovskii requires that f be differentiable while Theorem 2 requires

that £ be only continuous at x = 0.

Examples of Mangasarian's work are given in the compendium at the end
of this section. |

CHANG'S WORK

In reference [9] , Chang discusses a kinetic Liapunov function. This is

a Liapunov function of the first derivatives of the state variables. There-

fore, this idea is not new but is an extension of the Liapunov function used

2
in the proof of Krasovskii's theorem in which ”g‘_g // is used as the

function. In general, the technique consists of finding the sufficient con-

ditions for the time derivative x to approach zero. As X approaches zero,
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the system arrives at one of its equilibrium points xo. This method has the following

advantages:

(1) Por different sets of steady-state inputs, the equilibrium points x,
vary. In cases where the kinetic Liapunov function is independent of

Xg» the stability problem can be settled once and for all.

(2) The kinetic Liapunov function leads to linearizationm.

One main disadvantage is the severity of the resulting sufficient condi-
tions which are placed on the system by the kinetic Liapunov function.

Chang's stability analysis is applied to a continuous time dynamical
system defined by

E=f &0, (1)

where £ is a continuous function of x and t, having continuous finite first
partial derivatives of x.

The definition of the kinetic Liapunov functionK(x, _}_;, t) is as follows:

(i) K(x, X, t) is continuous in x, ;_';_, and t, positive definite in x and
is finite for finite //_)_'c_ // ; that is
0<xX( fIZfl) £ K & % )< B Jlx)), (2)
where « and @ are nondecreasing functions of // X // >

< ) = @ ) = 0, and o((//i;_//) and

@ ( //_:_'c_ // ) approach infinity as //_;g// approaches infinity.
(ii) The total time derivative dK/dt satisfies,
dx <« — Y (Ji))y <o, )
dt

except at _}3 = 0, where X(O) = 0, The inequalities (2) and (3) are to be
satisfied for all values of Xx.

Main Theorem

"A dynamical system always converges to one of its equilibrium points X,
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if (i) there exists a kinetic Liapunov function, and (ii) for any given r > O,
there exists an m(r) > O, such that //5 - _zge// > r for all x implies that
J%[ > mo."
\ In the following proposition, Chang shows why the existence of the kinetic
Liapunov function is a rather stringent condition,

Proposition 1. "A dynamical system having one or more permanent unstable

equilibrium points cannot have a kinetic Liapunov function."

This means that kinetic Liapunov functions do not exist for stable
equilibrium points of the system if that system has a permanent unstable
equilibrium pointj that is, a point where £ (§e’ t) =0 for all t and where
the system is unstable. The reason for this is that kinetic Liapunov functions
must exist for all x, but in the neighborhoods of unstable points they do not
exist,

Proposition 2. "For time-invariant systems condition (ii) of the kinetic

Liapunov function can be relaxed by allowing gig‘i,!?_‘.[ -)2 =0
dt

at a finite numbar of isolated points. of the state space.”

The results of the main theor iticn 1 lead te the followin

corollary:

Corollary 1. "A dynamical system is uniformly asymptotically stable in the

large if there exists a kinetic Liapunov function and only one stable equilib-
rium point."

The next corollary gives one way of finding a kinetic Liapunov function
for a time-invariant system. The proof of this corollary will be presented since
it is an example of a kinetic Liapunov function.

Corollary 2. "A time~invariant dynamical system having one stable equilibrium

point is asymptotically stable in the large if there exists a positive definite

symmetrical constant matrix B such that
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Ar(® B +BAr ®;

is also positive definite for every x, where

RE=1 B "
é@ = - ng » X F fi (x}.
Proof
Let the candidate for a kinetic Liapunov function be -;ET B x. From
equations (1) and (5) we have 5 = - A X. Thus, the time derivative of

K = éT B é is

R=% B kX +% B

iy

X

1%
e

]

-xf{apB + B A-BL%.

Both B and AT B + B A - é_must be positive definite for éT B é to be a
kinetic Liapunov function. In case B is a comstant, then é = 0, and the

corollary is proved.

It should be pointed out that for uniformly asymptotic stability in
the large the expression éT B + B A must be positive definite for the same
constant B and for all possible A's which are generated as x varies.

Chang uses the following algebraic relations in his examples, which
are in the compendium at the end of this section.

(1) For arbitrary A there exists a symm etrical, positive definite B such
that Ap B + B A is positive definite, if and only if all the eigen-
values of A are positive. The Matrix B is called an orientation of A.

(2) Let A®=A, + £f(x) A; , where A, and A; are constant matrices, and
L € f£(x) ¥ U. A symmetrical, positive definite matrix B is an
orientation of A(x) for all x, if and only if B is a common orienta-

tion of both A, + L Aj and A +U A .

(4)

(5)
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(3) There exists a common orientation B for matrices A and C if and only
-1
if there is a nomsingular transformation T such that both T A T and
-1
I CT are positive definite. Then B =TIp T .

INGWERSON'S WORK

Ingwerson published the main result of his thesis investigations [:1{;] ,
in reference 1(?] » in 1961. This result was a method of generating Liapunov func-
tions by an integration technique, In conjunction with reference [1@ is an intense
discussion between Vogt and Ingwerson, in references Elﬂ and E.i] , regarding
the preciseness of certain definitions gnd theorems. 1In reference @.3] s
Rodden shows that Ingwerson's method of generating Liapunov functions is
amenable to computational machine procedures.
Summarizing, Ingwerson's method consists of solving a matrix equation in
closed form, modifying the result, and performing a type of double integra-
tion. This method is well motivated as we will see in the following para-
graphs; can often be carried out analytically, and often gives excellent
results. This method of construction imposes only continuity and uniqueneas
conditions on the right-hand sides of the systems' differential equationms.
In principle, Liapunov functions of piecewise linear systems can be con-
structed with this method. Under certain conditions, discontinuous systems
can be handled. In the next paragraphs we briefly present Ingwerson's
historical and theoretical motivation for the development of his method.
This material comes from reference [1@ .
Liapunov considered the nonlinear autonomous system, 3.{_ = f£(x), where
?-.fl =g_£_i, . That is, the curl of vector f vanishes identically.

9x5;  Axg
Because of this, the following line integral is uniquely integrable:

X
V(® f £E@-dx .
o]
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The time derivative of V (x) is {— _f_Ti’i , which is nonpositive. 1If V is

positive definite, then the system is stable. We have asymptotic stability

in the large if V-—» 00 as //_}5 //———> 0o . A condition
for this is that the eigenvalues of the matrix with elements Z)zv

dx; A Xj
or dfi be positive. 1 J

ij

Liapunov's example given above is a special case of Krasovskii's

Theorem [lﬂ . The system considered by Krasovskii is, _>_.c_ = f(x, t), where

f£(0, t) = 0. The matrix B(x, t) is made up of the elements Afi .
LY
J

The theorem states that the system is asymptotically stable in the large
if the eigenvalues of the symmetric part of B = % @T + B) are negative.

For the autonomous case.Krasovskii, in reference [2:|’used a Liapunov function
of the formV = £, £. 1In this more general case, l'_1§, the positive definite

form, V = x, x, is used. The derivative of this V is V= x £ + iTE’

T £
To show that V is negative definite the scalar product of I . X

o—r—

is formed:

YWe.ex =V + x¢@@p + B
Rewriting this equation gives

—_
V)& 5 "2 F x By t+ B) 5/ e < o,

by hypothesis. Thus, V is negative definite.

Liapunov's results for linear, autonomous differential equations are

both necessary and sufficient. The system of equations he considered is

X =B x, (1)
where B is an nx M constant matrix. The choice for a Liapunov
function is

V=x, A X, (2)
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where A is another mmx - constant matrix. The corresponding time derivative
of V is
V=x

(ETA. + A§)§.=_§TQ.§:

T
where for asymptotic stability matrix C must be a positive definite,
symmetric matrix. Thus X = 0 1is asymptotically stable if and only if the
matrix A which satisfies

BpA+A B=-C
for the above C has positive eigenvalues. This condition may be relaxed
by allowing V to be negative semidefinite rather than negative definite.
Then only one of the eigenvalues of C need be different from zero. A suffi-
cient condition for the eigenvalues of A to be positive or zero is that
those of B have negative real parts.

Before presenting Ingwerson's table of A and C matrices, we will con-
sider a second order example of the above discussion. Define a second order
linear system by the following set of equations:

X1 T X2,

X2

- a2x1 - 81X2 .

Let matrix C take the form

0 0
c = _1 ;
2&1 as 0 231
thus, matrix A is given by
é = 1 82 0
2a1 a, :

(3)

(4)
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The corresponding Liapunov function and its derivative are

2 2
V=_}_{_Té_?_(_ = 1 (ale + XZ) )
2a1 a2
2
V="- x, x =- _X2
az

For the general linear, autonomcus case the matrix B is given by

0 1 0 o e 0
0 0 1 . e e 0
B = . . . . (5)
- an = ap-1 S ap-2|. .. = aj

For systems up to fourth order, Ingwerson [1@ , glves a table for the
various A's and C's corresponding to equations (4) and (5). This table
will now be reproduced; in each matrix A and C in the table there should
appear, an extra scalar multiplier similar to the one given above in the

second order case.

Table of Matrices A and C

2nd Order

2
ap 0 aj + as aj
A1= A2=
0 1 a 1
O 0 23182 0
0 2a 0 0
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3rd Order
2
a3 agaj 0 aja3 a3
2 2
Al = 3.28.3 ajaqg + a) 33 A2 = 33 aj + ag
0 a3 82 0 al
0 0 0 0 0
C = 0 0 0 Cy = 0 |[2{ajap; - a3)
| 0 0 2(aja, - aj) | o 0
2 2 2
ajag - ajag + a; ag a; as ajaps - ajg
2 3 2
A3 = al 82 al + 3.3 al
2
3132 - a3 31 al
2a3 (ajap; - a3y) 0 0
C3 = 0 0 0
0 0 0
Lﬁ4th Order
2 2 2
3334 3433 323334 - 3184 0
2 2 2 2
asas aja, + as ajsag azay
2 2 2 2 2
Aq azaja; - ajay ajzaj ajag + ap; ag - ajagas-aja, aj
2
0 aja, a3 a2a3- ala4
2 2
R2 aja- a3 ;3 R3 = ajaga3z - a3 - a1 a4,
0 0 4] 0 0 0 0
0 0 0 0 0 0 0
C1 = C2 =
(o] (¢) 0 0 0 0 2R3
0 0 0 2R3 0 0 0
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2
a;a, alasa4 a3a4 0
2 2 2
a1a33, | 4123 + Ry a3 481 34 2134
2 2 2
aza, a3 +a) a, a; ag + ajzay - aja, ajag
Ay =
0 ajay ajag as
- 5 )
34R2 81 a.«!g 8184
2 2 2 R
A3z =| a) a4 |aRy- aja, + a) a3 a; + ap 2
2 3 2
aja, a; a ag + 3 ay
2
0 R2 al al
0 0 4] 0 2a+R3 o 0 0
=10 2R 0 0 Cy = o 0 0
3 4
0 0 ] 0 (o) 0 0 i
{
0 0 0 0 0 0 ?
ajRy + a,(agRy -~ajay) | aj(asRy - ajay) ajR3 + aszRo R3
2 2
33(32R2 - ala_ﬁ) (82 - 84)R2 + 8134(-31 - 32) alasz 82R2 - 8134
2
A4 = a1R3 + 34R2 alasz al RZ + 3184 ale
R3 a2R,2 - ajay ale Rz

Ingwerson wanted a method of generating Liapunov functions which would

solve the linear stability problem exactly and which would give sufficient

conditions for the stability of nonlinear svstems under small disturbances;

with the hope, that the conditions for stability under large deviations would

also be useful in applications, although the results would be very conserva-

tive.

His method is based on the observation that the quadratic part of the




- 23 -
Liapunov function must give stability information for the linearized equation$
of motion of the system. Ingwerson also based some of the development given
below on the example of Liapunov, given above, and on Krasovskii's Theorem
and proof, The outline given below is based on the material presented in
references [3] and [1(_5] .

The nonlinear autonomous system

= £
is differentiated with respect to time to give
X=B® Xk,

where B(x) is the Jacobian matrix of f£(x). That is, the elements of B are
'Bfi/axj . The matrix equation
BrA + A B=-C

may be solved for a matrix A(x) for a given choice of matrix C, as in the

linear results of Liapunov. In the linear case A is a matrix with elements

of the form 1 a%y . Ingwerson observed that if this were also
2 9x; axj

true for matrix A(x), then a Liapunov function could be found by performing
two integrations. His reasoning being that for any procedure based on this
idea, the correct answers are obtained for the linear problem,as is desired
in any general method.

There are necessary conditions which must be fulfilled by the elements
of A(x) if these elements are to be second partial derivatives of a scalar
function. First, the elements must be such that the "mixed partials™ of V
are equal, assuming sufficient continuity restrictions on the partial

derivatives; this implies that A(x) must be symmetric, which is the case.
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Second, the elements of A(x) must be such that

da i dajp
ARk = 3 xj

again assuming sufficient continuity requirements. This condition is usually
not fulfilled in the matrices, A(x), derived above. But the A(x) obtained
does have the desirable feature that the Liapunov function derived from
A(Q) is valid in the vicinity of the origin. This Liapunov function gives
stability information about the linear approximation of X = f(x) in the
vicinity of x = 0.

From the above "impasse' Ingwerson salvaged the following procedure.
He found, as one can see in the examples at the end of this section, that
good results could be obtained if the matrix A(x) is obtained as above and

in each element aj 5 (1 # j) of A(x) only the variables x4 and xj are retained,

the other variables are replaced by zero. Thus, a ) = aij(xi, xj). There-
fore, the gradient of the scalar function V is found from the matrix integra-

tion, which is an "elementwise" indefinite integration procedure, of

é(&) = A(xi’ Xj)>

1%

Jv = A (x4, xj)d.’i"
o
The resulting vector YV has curl zero and, hence, is the gradient of a
scalar function V. The line integration of YV gives the scalar V. Then
V and ‘;’ = Wr f are checked for the properties of definiteness
or semidefiniteness as the case may be.
The table given by Ingwerson of the A and C matrices for linear systems

can be used for this nonlinear problem. From the table and the corresponding

B(x) matrix, a matrix A is chosen, except the constant elements in A are
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replaced by the corresponding variable elements obtained from the B - matrix.
But one should realize that there is much ingenuity required in the choice of
matrix A and in deciding when it is feasible to choose a combination of the
A's, and thus a linear combination of corresponding "Liapunov functions', and
in determining when some of the elements in A(x) should be modified.

In summary, the Ingwerson method is, [5]:
(1) Obtain the matrix B(x) from the given system, x = £(x)

x)3; and choose
a symmetric C. Then "calculate" matrix A(x) from BrA +A B=-C.
(2) Cross out the terms in A(x) which violate ajj = a;33 and cross out

those terms in the element aij which violate aij = aij (xi, XJ)'

(3) Perform the integrationms,

P-4
w = A®d4dx ,
[
and X
i YV -dx
o

(4) Find V from the equation

VoW f @ -

(5) Test V and V for the appropriate definiteness properties.

(In step 1, Ingwerson's table of "linear A-matrices' provides a useful first

approximation for the desired A(x)'s 1f the constants aj j are replaced by
the corresponding variables aij (xi, xj).
SZEGO'S WORK

In reference Eé] Szego developed a procedure similar to the other

techniques presented in this section. The systems whose stability is to
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be investigated by this technique are nonlinear autonomous systems with
nonlinearities representable in polynominal form. The V-functions used
in the analysis are derived from the particular system under investigation
by a procedure based upon a class of functions that Szego calls 'the class

of generating V-functions."

V() = x ;A(® x, where A(x) = I:aij (=, xj):l > Ay = ayy - The

coefficients aj j are determined such that V possesses the desired properties

Such a generating V-function has the form

specified in Szego's Stability Theorems.
The system under investigation is
x= £, €))
which is assumed to have only one equilibrium point, X = 0. The nonlinearity,
f(x), is representable in polynominal form. Szego's theorem on asymptotic

stability in the large is presented in the usual form. But for local

stability his theorem is stated in the following way:

"A sufficient condition that the solution x = 0 of the system (1) is
locally stable is that there exists a positive definite scalar function
V= f(gc_) with continuous first partial derivatives, such that its total
time derivative with respect to the system (1) has the form

V=0 g [§ (25)] ; (2)
where O (x) is a semidefinite function not identically equal to zero on any
nontrivial solution of (1), and g(x) is indefinite on a closed surface. In
particular assume that g (x) = 0 is a closed surface, or a family of
closed surfaces, and g (u) is such that g (0) = 0 and
gu)/u >0 ."

In this theorem the meaning of being indefinite on a closed surface

is: "A function defined by f = f (%) is indefinite on a closed
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surface if }5 (x) = 0 is a closed bounded surface and if the sign
of 75 () inside #(x) = 0 is different from the sign of & (x)
outside % (x) = 0." This is the essence of the difference between
Szego's Method and some of the other methods; that is, \.I is allowed to be
indefinite on a closed surface. This then leads to the possibility of
approximating the limit surface of system (1), if it exists.

With reference to this limit surface, we now briefly describe the

construction procedure used to obtain an approximation of this surface.

We denote by V = 7)c that surface of the family V = %(5) which is
circumscribed to the surface g (x) = 0, and V = 2/m the inscribed surface.
Then for every surface of the family V = yé (x) such that V= Vc ?77c ,
‘;c will be semidefinite of a particular sign; and for every surface with

Ve = 7) m, ‘.7‘,_ will be semidefinite of opposite sign. The closed bounded
surface, § (x) = 0, lies between the surfaces f(é) =‘[j)c and P(}_c_) =7)m.
If‘l?c =‘Dm, then f (x) = O identifies exactly the boundary between stability
and instability. This boundary is a limit set of the system. If this

the solutions will be bounded in the neighborhood of x = 0 for ‘.Ic £ 0. The
limit cycle will be unstable and some solutions will be unbounded if ‘;c > 0.
From the above discussion one is given a method of approximating limit cycles,
as will be demonstrated in the examples.

Szego's main aim is to investigate the stability of the solution x = 0

so as to identify analytically the regions of stability or instability of the
solutionJ X = _Q_)and the boundaries between them by using the Second Method of
Liapunov. The "generating V-function is a polynomial in xj, ... , X, represented

as follows:

V® =274 & (3)

H]
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where the elements of A are of the form ajj = aij (xi, xd.))and are not
dependent upon x,. The reason for the last restriction is that usually
limit cycles have at most two real intersections with the hyperplanes

X4y = constant, i=1l, 2, ... , n-1. The unknown parameters aj j are deter-
mined such that \’7 possesses the desired properties. Since f(x) in (1) is

representable in polynominal form, then the coefficients a up to a constant

ij?
factor, satisfy simple algebraic equationms.

From Szego's formulation of the method of generating V-functions, the
problem of the stability of system (1) is reduced to the investigation of
the properties of the solution of a matrix equation and the values of certain
constants. Let us consider system (1) in the form:

x =B ® x, (4)

where B is not generally known uniquely. The V-function is given by equation (3)
where the matrix A 1s symmetric and the aj elements are of the form
a3 = 3y (xL, XJ)' From equations (3) and (4) we get the time derivative

of V:

V=5T{§TA+A§.+A}§= (5)
As pointed out in Szeg'c;’s Theorem, we want the form of V to be

Ve O { xpe ®x - K} (6)

where ¢ = Xq c(x)x is a definite scalar function such that ;ﬁ £ K, © () is
a semidefinite scaler function not equal to zero on a trajectory of the system

(1), and K is a nonnegative constant. If we assume that @ (x) = X X

then V becomes

V=xrp {@*(&) x xre @ -K F?.H(zs)}z- ™




- 29 -
Thus, the problem of stability is reduced to the solution of the following

matrix equation for matrix A:

5’: {.ET @ é (X;'JXJ) + A (XL)XJ) _B_ (_}E)} x =

~xm i@z e @ “KFH @ }x (®)
which is derived from equations (5) and (7) and from the particular form
of A which is required for system (1). For second and fourth order systems,
the solution of (8) is satisfactory for stability analysis.

For third order systems, Szego suggests the following V-function:
Vex {_D_xx E+A}x, (9)
T T T - -

 where A, D, and E are symmetric matrices of the form, A = [;aij (xi, xji] 5

B = [;bij (xi, szj and E = [_eij (Xi’ xji] . From equation (7) and

and the total time derivative of (9), the problem of stability for the third -
order system is reduced to the computation of the 18 elements of the matrices A,

D and E which satisfy the equation:

ET{@TE + D B)x .’.{.TE +D x ET@TE + E B) +']-3-TA + A .]é}&:

%
p]
-

"

) K27l =/ L.

=57{'—§”‘ - K @] x (10)

For a fifth - order system one can use the following V-functions

V=5T§E§- 5T§--§-’-‘.T§+2.§_’ST§+_A.}§, (11)
where A, F, G and H are symmetric matrices and either D or E is

symmetrical, and
A - [y G xp)] - oy 5] CICTESTE
B o= [l xd] g [eyn 1) [£1560 5] -

These six matrices must satisfy a matrix equation similar to equations (8)

"
I
[t

i
!

and (10).
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In summary, we give a list of several observations which cgn be made
about the procedure.

(1) 1In solving the matrix equations in (8) and (10) several simplifying
assumptions are usually made and the final result is a modification
of the original proposed V-function. Examples of this procedure are
given at the end of the section.

(2) Similar V-functions can be constructed for every finite-order autonomous
system.

(3) This method of generating Liapunov functions uses the ''geometric
meaning" of the functions and therefore gives a method to estimate
limit surfaces, if they exist.

(4) This same method for constructing Liapunov functions can also use the

approach of Krasovskii by introducing a V-function of the form
VeEr A Gy, x) £ @ (12)
whose total time derivative contains the Jacobian matrix of the system (1)

in place of the B(x) matrix. The advantage is that the Jacobian Matrix is

uniquely defined by the system while the B(x) matrix is not uniquely defined.

(5) The disadvantage of this method is the "usually story', too much computation

is required for most systems.
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COMPENDIUM OF EXAMPLES

Example 1, Ela Linear Circuit

We apply Krasovskii's theorem to the following linear circuit

el = - 41(61 + 4Ke ’

€y = 2K€ - kS,

where the Jacobian matrix is

F®) = - 4K 4K

2K -6K | .

A
Thus, the F matrix becomes

F = = 6
F =F +Fy;= |-8K K
6K -12K |,
A
where the eigenvalues of F are negative if K>0. Therefore the circuit

is asymptotically stable everywhere. |

Example 2, rS:l Second Order, Nonlinear System

We have a nonlinear system given by

X1 = %2

X2

- Kf(x1) - wxp

The candidate for a Liapunov function in this case is chosen to be of the form

- _ 2 2
V=54 £ = a, f; +23, 55, + a5t
where f; = x5 and fo =- Kf(x1)-wxy . For

a positive definite V we must require that f(xl) = 0 implies that X1 =0,
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a, >0,3a 3, - alzz > 0. The corresponding V is

. (v dfi
af; dt  + gfz dt

{ﬂ[af_lél + a_@;fc?_] + Qv [’a_f_él + Jf2 :EZJ

of1|2ax %) fy | A% dx
where
v
P 1 ™ 2a131 f1 + 2ay19 £y,
v
P ) = 2ajp f1 + 2a59 f9,
VL =0, 9fl = 1, f2 = - K", Jf2 = -
Qxl QXZ ’?xl ’3X2
Thus, the conditions for asymptotic stability are as follows:
if ay = a2y > 0, ay =?("“12, then
2{>1, W K 1 , and

Ywen -2 2/ (F-DAW-D oo dewsn 20/ @-nfw-1

XZ JZ

Example 3, fﬂ Second Order, Nonlinear System

The system is described by

Xy =f1(x1) + f2 (XZ)’

x1 + axz,
fl(O) = f2(0) =0,

fl’ 1’:2 are differentiable.

Therefore,

A 2 fi(xl) 1+ f' (x2)
£ -

1
1+ f2 (x2) 2a
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To satisfy the hypotheses of Krasovskii's theorem, we let

W 4 a| dfl] — 1 + /df2 272 2
() [ @] e
@ dfl
Ty € —e<0 forall x.

Example 4, |é| Second Order, Nonlinear

- We have a second order system defined by

x1 = £1(x1) + g1 (x3),

Xy = £5(%1) + g (x)).
Thus,
] ]
A 2f1 f2 + gi
E:
] ' 1
fz + g, 2g2
A
The characteristic equation for F is
2 2
ANM=—2@ + gl) )\ + 4glgl —f{al + 821 = o
b S A LA L T4 L-L -’-J

The real parts of the eigenvalues are negative if

1) gi = f; for x # 0,

(2) £ + g <0 forx # 0.

Therefore, the system will be completely stable if (1) and (2) hold.

The next three examples are systems which can not be analyzed by

for any x,

Krasovskii's theorem but are applications of the more general theorems of

Mangasarian. These examples are nonautonomous and have right-hand sides

which are not everywhere differentiable.
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Example 5, [6:| Second Order, Nonautonomous

In state variable notation, the defining equations are

Xz’

- Xl - b(t) X2 - C(t) X23 .

The physical application of this equation may be interpreted as the move-
ment of a unit point mass under a unit spring force x; and under a nonlinear
damping force b (t:);:l + c(t) }’cf . The scalar function xp £(t, x¥) which

is the test function in Mangasarian's Theorem is

2 4
_g(_,r_f_ = - {b(t) X, + c(t) XZ}'
This function is concave, but not strictly concave if b(t) > O and
c(t) > 0 . Hence, by Mangasarian's Theorem 1, the equilibrium point

(x1 xz) = (0, 0) is stable.

Example 6, [6] Second Order, Autonomous

The system is defined by

] -~ X] - XX, , for x, él)
xl— 3
-xl-xlxz,forx2>1)
2 <
-x2+x1,forx2_1)
Xy =

2 2
- Xy t* X; Xy ,forxz > 1.

For this system we have £(0) = 0. Also, the test function, X, f(x) is

2 2
_}_c_T_f,()g)=-x1-x2 ’

which is strictly concave. Hence by Theorem 2 of Mangasarian, the equilibrium

point (0, 0) is uniformly asymptotically stable in the large. Krasovskii's
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result can not be applied here because f is nondifferentiable along the line (x;,
in phase space.

Example 7, [6] Nonautonomous System

The system is described by

2 2 2
(1 + Jsin t) (- ] + XXy ), % + xp £1,
}.{1 =
(1+Xsi £} (- x - XX, ) xz + x > 1
n X1 1*2 /> X 2 ’
2 2 2
1+ (sin t) (- X, = X x2) > X] + X, £1,
4
x ==
2 2 2 2
(1r+ Ksin t)(- X9 +x1 Xz) » X1t %Xy > 1,

where 0 < X( 0.9 . For this example f£(t, 0) = 0. Also, f£(t, x)

is discontinuous alomg the circle x12 + x22 = 1. However, the scalar function

xp £(t, 0 = - (1 + ¥ sin t)(X% + x; )

is strictly concave in x for 0 £t <« o0 , and the
2 2 2
Lim sup E(l +b’sin t)(xl + X, )} € - 1(x +x) <0,
10

for x £ 0 . Hence, by Theorem 2 of Mangasarian, the point (0,0) is a

uniformly, asymptotically stable point in the large.
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Example 8, J:9L Steady-State Condition - With Inputs

The system is defined by
2 2
X1 = X9 = axp (Xl + X9 )y + il(t) s

X2

I

2 2
- x1 - axp (%7 + xz) + iz(t) .

Assume that the inputs settle eventually down to constant inputs i; and i; .
The problem is to determine if the system is uniformly asymptotically stable

in the large about its equilibrium point wherever that may be. The matrix

A = {;:Qii] is
X

2
3ax1 23x1X2 -1
A = 5
2ax1xy +1 3ax, .
Choose the kinetic Liapunov function to be of the form K = 2‘.{'1'3{: = ;:12 + 1222
Thus,
;&\ [
K= - % {AT + A } %,
where
2
6 ax 1 baxyxy
Ap+ 4 = 2
At 4 ax xy bax, .

The matrix At + A is positive definite except at (0,0) if a > 0; thus, the
system is uniformly asymptotically stable in the large about its equilibrium

point.
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Example 9, fé] Systems with a Nonlinear Gain Element

Systems with nonlinear gain element can be described in state variable x

notation by the equation

_:i =-§_°§_ -b f(xl) +[:gor(t) + glz.‘(t)-l- . . :I .

For inputs in which the square bracketed term is constant, a steady state

equilibrium point x, exists. We will consider the stability of this Xe» which

is the equilibrium point of

x=-A x-b f(x,) - constant.
= - 1
Differentiating this equation gives
- e L] , -
x=-A x-f(x)A x,

where A; is a matrix with b as its first column and zeros everywhere else. Let

’
U and L be the upper and lower bounds of f (xl):
L € f' (x) < U

From Chang's theoretical discussion, the general system will be uniformly

~ asymptotically stable in the large if a common orientation can be found for

@ +LAp) and (&, +UAp).

First Order System

The defining equation is
X = - ax - f(x) + r(t)
where r(t) — constant, "sufficiently fast." The matrices Ag and A
are first order and equal(a) and (1), respectively. The sufficient condition
for uniformly asymptotic stability in the large is that (a + f’(x) ) > o.
This is also the necessary condition if the system is to be stable for every

Xa.
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Second Order System

Consider the system
X1 =XZ,

. XZ =‘aX2 - f(xl) s

where L £ f'(x1) £ U. A common orientation exists for the

matrices
0 -1 0 ~1
and
L a U a
if
i) L > 0, a > O:
and

1) U <+ v T )2,

Condition (1) is necessary for local stability, while conditioms (ii) and (i)
are both sufficient for uniform asymptotic stability in the large.
In this case Chang can easily show that his kinetic Liapunov function is

too conservative. Assume f(0) = 0. Consider

X1
1

£(x) dx + 2 (ax1 + x2)2

]

A
o
as a candidate for a Liapunov function. The time derivative is

V = £(xq) %1 + (ax; + x,)(any + %,)
1 1 1 2 1 2

xo£(x1) + (axy + xp)(ax, - axy - £(x1))

- axl £ (x]_) .
Thus, V is a Liapunov function is a > 0 and xjf(x]) > 0, x3 74 0 . These

conditions imply the conditions in (i), but, (ii) is not necessary.
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Example 10, 10 Third Order System

The third order system is given by

Xl =X2

X2 = X3

3
x3 = — (x3 +cxy) — bX3)

where
0 1 0
B(x) = 0 0 1 .
2 2
-3(x1 + cxz) -3c(x1 + cx2) -b

This matrix B(x) has the same form as the B in the linear case, but with

'

variable elements. The third-order matrix corresponding to 52 in the table

under 'Ingwerson's Work™ is

2 2
3b(x; + cxy) 3(x; + cxp) 0
2 2 2
A 2(5) = 3(xq + cx,) b +3c (%7 + exy) b .
0 b 1

U ]
r tae 1

are replaced by variables.

Next, matrix _A_2 (xi,xj) is obtained from _A_2 (x) by letting certain variables

vanish:

)
P

near case except certain constant elements

2
A Lxy, xj) =| 3(x1 + cx9)

2 2
3bX1 3(X1 + CXZ) 0
2 3 2
b +3¢c -x 2 b
0 b 1

Performing the integration

b. <

w

(]

éz (xi’ XJ) dx ,
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gives
3 3 3
le + 1/C (Xl + CX2) — xl/C
3 2 .
v = (x; + cxy) + b x, + bxg
bxys + x3

The Liapunov function V is found by evaluating the line integral of YV along
any path of integration:

X

bx &4 4 4
v = YW ed x = 1 . 1+ %) X3 +
o 4 4ec 4e
2
2 2
+ b” x 2 bx,x + X
—y * T2 3/2 .

When b > 0, ¢ > 0, bc-1 > 0, then V > O and VV = 0 only when x = 0. The time

derivative of V is given by

2

2 2 2
Wox = - (bc-1) (3x] + 3ex;x, + ¢ x, ) X,

V is negative semidefinite when b > 0, ¢ > 0, and bc-1 > 0. In this particular
case, the conditions are also necessary for the asymptotic stability of the

system.

Example 11, [—16] Nonlinear Compensation

The physical system considered here 1s an undamped second-order system
which is made asymptotically stable by regulating the gain of an amplifier.

The equations of motion in state-variable form are

X] T Xy = Xp

2
%y = be (xp - x0) =Bl (x) - x0)" (xp - xp0)-
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The terms xjgp and X20 are time varying inputs which are held constant after some
time ti. Then for t > t1» the substitution, Y1 = X1 - Xpg and Yo = X9 - Xgq

reduces the above equation to

y1 =72,

. 2

Yo =-bo y; -Dbi ¥y vy .
J J

If these equations are asymptotically stable in the large, then the original
system is stable for all inputs.

The matrix B(y) is

0 1
B = 2
-bo _ 2b1 y.y B
J K] 172 3 1

The first matrix in Ingwerson's table is used, that is

b 2b
2 . 21 yiys 0
A=| 7 T3
0 1
The matrix é(yi, yj) becomes
bo/J O
A(yi, y3) = ;
0 1
thus, YV becomes
x
bo yi
w = A (g, ¥y dx = J .
‘ ]
72

Therefore, V and V become

bo 2 1 .2
v={2y N1 * 5 Y, ¢ >



V="P_1. y2 y2

[
[y
N

If b, > 0, by >0 and J > 0, then V is positive definite and V is negative
semidefinite and the only trajectory of the system for which X; is identically

zero is y = 0. Thus, the system is asymptotically stable in the large.

Example 12, IiQ] Discontinuous System

The physical system is a linear second order switching system whose

actuating signal is switched positive or negative according to the sign of the

linear switching criterion x; + cxj. The equations of motion are

X} = x2 |
3 2

X9 = - KW sgn (x; +cxp) -Wx3 - 2D wxy |

From the theory of generalized functions, we know that the derivative of sgn x

is twice the Dirac delta function, c{‘(x), Thus, the Jacobian matrix of the

above system is

0 1

B(x) = 2 2 2
-W- 2k LJ g(xl +cx2) -2D W - 2Kc W C;(xl +cx2)

In this case Ingwerson considers a linear combination of the A-matrices from
"his table', namely,/L/Al + A, . The first row, first column element of

H A, t+A, must be modified so that J (x) does not occur. Thus,
from the modified HAL +4 we get the matrix A(xi, xj) in the

following form:

3 2 2 2!
4D + 1 + Y + 2K 2cD W+ 1 +4) x1) | 2D LW+ 2Kc x1+ cx
(s 4y w0 W 2ed Wt 144 & (xp) | 20 L+ 2Ke LO4(

2
2D W+ 2Kc W S(xl + cxj3) 1+
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Integration of this matrix gives VV in the form:

2 2
2 2
(b +1 +/l/)u) x; +K 3 (2¢D u.)+/7) sgn x; + 2Dex, + K Wsgn(x,

+ CX2)

w o=

2 2
2DU)x1 + Kc W0 sgn(xy + cxp) - Ke (Jsgn exy + (1 +ﬁ)x2

The time derivative of V is equal to V__YT gc_ » which is :Zivery complicated
expression. To simplify \’7, Ingwerson first let /f =W ¢ which
makes certain terms in \; nonpositive. Also, 1t can be observed that the
(sgn x;) and (sgn Cx,) terms in\.l complicate matters. These terms are

dropped without interfering with the integrability of YV. Finally, we have

2 2 2 2 2
vV = (4D +1 +wec ) [Xl ] + D U.)X]_Xz + K w (X].. + CXz )-
[+

2 2 2
+sgn (x7 +cxp) + (1 +We )x2/2 ,

2 2 2 2
(B +1 +(Uc)(,L)x1 + ZDU)XZ + KW sgn(x; + cxy)

w =
2 JZ
2Du)x1 + Kc (WD sgn (x1 +cx9) + Q1+ c) Xy
and
V=Y_\LT§_=—2DLL)(X1 +ex,) —K c W) +

3
— K WW(2D + cw)(xy + cxg) sgn (x; + cx,).

[
Therefore, V is positive definite and V is negative, giving us asymptetic

stability in the large.

Example 13, rla Third Order ~ Nonlinear Case

The third order equation

y + al.y‘ + az}.' + f(y)y =0

is asymptotically stable in the large if the roots of its characteristic



equation, calculated as if f(y) were constant, have negative real parts.

The proof of this statement is given below by the application of Ingwerson's

method to this problem.

In order to prove that the above conclusions are valid we choose the

matrix C in the equation

_BE.TA + A B =-C
to be of the form
2a2(yf' + £) 0 2(yf' + £)
£ = 0 o 0
2(y£' + £) 0 Za1

From the usual form of the equivalent system of first order equations, we have

the matrix B given as

=
]

0 1 0
0 0 1
-f (Y) -az "al

Thus, the A can be determined and is then reduced to the following matrix A¥.

2
a, +a1(yf' + £f) aja, ay
a - 2,
a,a, a; a, a;
a, a; 2

Integrate A* to get YV, integrate YV to get V, and form Z\_I_Tg._c_ to get V; thus,

we have:

2 . LY )
a y + alf(y) y + ajayy + ayy

2 . .o
ajay + (ap +a))y + ayy

agy + aj;y + 2y
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2 y [ ] .
V= [az/z:] y +a f(y)ydy +ajayy +agpyyy+

2 . » ve (X4
+ + ﬁ +
(a1 az) 9 + ayy y

<3e
[]

- {azf(y) y% + 26Qy) y ¥y + a1'>; }

Therefore, V is positive definite if a; > 0, a, > 0, £(y) > 0; and V is
nonpositive if a; > O, a, > 0, £f(y) > 0 and alaz—f(y) > 0. These are the

Routh-Hurwitz inequalities for the characteristic equation defined for this

system where f(y) replaces the constant a3. From linear theory these conditions

are necessary and sufficient for the characteristic roots to have negative -
real parts. For this nonlinear case we have thus obtained sufficient stability
conditions, but not necessary conditions.

Example 14, [13, 14] Third Q@rder Example

This problem deals with a third order linear plant with a nonlinear
element. The gain of the nonlinearity is the sum of a linear and a cubic
term. For large error signals, the nonlinear gain can cause instability if
the velocity feedback coefficient, Cy, is not sufficiently large. The system
is defined by the following set of equations:

X1 = %2

%
N
]

*3
b b 2
- For this system, we will only summarize the results of Ingwerson and
Rodden and mot consider the detailed analysis of the problem.
(1) Ingwerson has shown that the system is globally asymptotically stable

if by > 0, b, > 0, b3 > 0, by >0, Cy > 0 and byCy > 1.
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(2) For no damping (Cp = 0), Ingwerson analytically derived and investigated

the fourth degree Liapunov function:

2 .
= b1b 3
\' b1b3 Xy + ; 4 x14 + 2 b3x1x2 + 2b4x1 X, +

+ (b]‘iz +b2) x22 + 2byxoxq + xéz s

whose derivative is
[ ]

= - - - 2 2

For b1b2-b3 > 0, V > 0 outside the region bounded by the planes
‘ 5
¥ = % biby - b3‘}
3b4

The stability domain is the minimum V-surface which is tangent to these planes.

The tangent points are given by the following:

Xp =% (b3 +byx;2) , x5 = |byx;| (b3 + b, x2)
b by

and
3
bjby - b3
xl = i 31‘)4
(3) Rodden, for b1 = b2 =2, b3 = b4 = 1, estimated the region of asymptotic

stability for the above system with the use of an electronic computer and
the formulation of Ingwersonm.

Example 15, |_16] Second Order Systems

Consider the system defined by

.

X1 T X%
4 ) 3

. L2
X, E(l X7+ x
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The simplest form of a definite function is
V=x.,4 ® x =3 a, (x)) 0\ x .
0 A

Let us consider the form, ‘\][/' (x), defined by
V@ -5 (3 ea3)s
where B is defined by é =B x. For this systen, ’YL (x) takes the form

'}L@ = 2a;(x1) %1%y + 2x, { € (1 - xlz +X14 ) %, - X13} » To find

the limit surface, we set ‘)L@ equal to zero., Thus, for 74@) =0 ,
one has

x, =0, x, = X 3. ay(x7)x

2 R 1 132147 . .

€ (l-X12+x14) )
We now let these two curves, for which '% (x) = 0 , coincide.

Therefore, we have

3
X9 = 0= LS al(xl)xl

el - x12 + x141
or aj(xp) = x1? When the above two curves coincide the equilibrium solution
X = 0 will either be globally stable or unstable.
From the above procedure we have obtained the type of ag (xl) function
which is required, but for more ¥flexibility we replace the aj(x1) in V by
a constant, b;, times x12 . Thus, our candidate for a Liapunov function
is V = by x;' + x,%, which is positive definite if b; > 0. The time

derivative is

. 3 2 2 4 3
V =4by %1 xp + 2€x9 (1 -x13 + x1 ) — 2x] X2
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where for b, = %, we have

V=2€x22(1—xf + xf)

L]
Thus, V is semidefinite and is not identically equal to zero on any non-
trivial solution of the original system. In conclusion, the system is

globally asymptotically stable if € < O and globally completely unstable

if € > 0.

Example 16, [la Van der Pol's Equation

Let us consider van der Pol's equation with € =1 :
X] = Xg,

)

é(l-xlz)xz - X1

By the following choice of V we can show that the system is unstable inside

2 2
the circle x; + %9 =1 :

2 2
V =ayx; + asxg .

The function, ')L, defined in example 15, becomes

2 2
}L(g) = 2ayx1xg9 + 2axy - 2asXx] - 2asx1xj.

As before, we let 7L(§) = 0 and the result is that x, = 0 and

(az- al) Xy
Xn B ———v . The curves coincide if a, = a,. Thus, let
2 ap(l - x{*) 1 2

a; =a, = 1 in V. This gives

2 2

V=x3 + x2

I

and

2 2
V=2xp (1-1x1).

Therefore, from instability theorems, the van der Pol equation is unstable

2 2
inside the circle 3% +xy = 1.
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As another generating V-function we choose

2 2
V= al(xl) Xy + 2a12 (Xl) XXy +oasx,

where
2 2 2
% (_!S) = Xz (812 + 82 - 32){1.1 ) - alle +
+ o + 2
xxp(aly - ay +apy tax) .

By solving the equation)L(g) = 0 and constraining the two surfaces, given by

solutions of this equation, to coincide and assuming that the functions aij(xl) are

polynomials in X1, the following expressions for al(xl) and alz(xl) are obtained:

4 2
aj(xy) = azx] - 2arx} + 2ap

2
a1p(x1) = ayx) - ap,

Before substituting these expressions for ajo and a; into the V-functionm,
the following constants are introduced:
| a;j(xp) = b]_xl4 - blez + 2a2,
2
a12(x1) =% byx; - a2y

Thus, our V-function becomes

_ 6 4 3 2
V= blx1 2Xq 3%X1 % + 2azx1 +

2
where the corresponding % with respect to the system is given by
d 5 3
vV = (6b1 - b3) X1 Xg + (b3 - 4b2 + 2&2) X1 % -+
2 2 4 2
+ (3 b3 - 232) xl x2 - b3x1 + 232x1 o
Rewriting G gives

Ve 0w J {g (5)} = Xlz{ (6by - by) x x, +

2 2
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where the expression in the brackets, [1 , is 3 Zg(_}é)} . In
order to simplify the form 3 {g(g)} we set by = 6 bj.

Consequently, the curve g (x) =0 is defined by

2 2 2
3 bl X - (3b1- sz + 32) X1xg + (82 - 9b1) Xy = ap,

and the V-function becomes
6 2
Ve blxl 'bzX14 + 6b1x13 X9 + 282}(12 - 2&2X1X2 + asxy .
Thus, if one chooses by, by, and aj in the following way the curve
g (xX) = 0 1is closed (definite) and the family of curves, V = constant,
is a family of closed (definite) curves:

2

b;j > 0, a5 > 9bp,
The Poincare - Bendixon theory states that there exists at least one stable
limit cycle in the annular region defined by two curves of the family,
V = constant; namely, the inscribed and circumscribed curves to the closed
curve g (x) = 0. By numerical techniques, this stable limit cycle
can be approximated "arbitrarily close'. Also, it can be proved that

outside the circumscribed curve the system is asymptotically stable.

Example 17, Ilﬁl Third Qrder System

This is an application of Szego's technique to prove the existence of
local stability for systems with only one critical point. The system is

defined by:
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‘which has a critical point at x = 0. The form of the V-finction is assumed

to be
2 2 2
V = aj] X1 + agy Xp + X3 + 2&1&2 X1X9 +
+ 2a53 x9x3 + 2a13x1}{3,
where ajj = ajy (x1, xj). The corresponding }L@) for this third order

system is

¥ ®

2
- GX2 - 2X13 + 2&13 X9 - 6313 Xl} +
+ 2 + z2 _, 2 4
i;“11 X1%2 T a2 % 33 %2
- 2a X, = aq,X 4 2a x3 X
13 *1%2 13%1 23%1 *2 ¢ .
The conditions which make V indefinite on a closed surface are
a;3 =0, a3 =0,a; =x , ap = 1L

For simplification purposes, we let

Therefore, we get

4 2 2 3
vV =3/2 x; o+ sz + Xy + 2% X, + 6x2x3

where

. 2 2
V=6x2 (xl -2)°

The V-function is positive and closed between the planes lel = /3
and V is negative semidefinite and not equal to zero on a trajectory of

the system between the planes ’xl I = V2 . V is positive semi-
definite outside }xl ' = J2 . Thus, the system is stable in the
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region defined by the closed surface

V =3/2 xl4 + 11 x'22 + x32 + 2x13 X, + 6x2x3

=& V2

and unstable according to Chetaev's theorem outside the planes lxl , = ‘/ 3 .
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WORK OF SZEGO AND ZUBOV

SUMMARY

This section considers Zubov's method for generating Liapunov functions,
which are solutions of partial differential equations, along with the generaliza-
tions given by SzZego. Also, included in this section is the work of Margolis and
Roddén’ which deals with the numerical solution of Zubov's partial differential
equation. A compendium of examples is given at the end of the section.

INTRODUCTION

The first part of this section concerns itself with the discussion of
the stability theorems of Zubov. In these theorems Zubov describes the
partial differential equations which the Liapunov functions must satisfy to
guarantee the various types of stabili;y. The domains of asymptotic stability
are also determined from the V-functions satisfying these partial differential
equations. The types of problems considered in Zubov's theorems are as follows:
(1) the(asymptotic stability of the null solution, (2) the stability of systems
- with persistent perturbations, (3) the determination of analytic systems having
specified domains of stability, (4) the stability of systems with homogeneous
right-sides, (5) stability of systems with self-oscillations, (6) and the.
stability of nonautomous systems.

Next, we discuss the application of numerical techmniques to the solutioms
of the Zubov equations. The work of Zubov, Margolis, Vogt and Rodden is
- considered. Zubov's theorems are listed and discussed for the second order
case, with the implication that the theorems are applicable for higher order
systems. The numerical results obtained by Margolis and Rodden are presented

and conclusions and proposals for future work are given.
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The final part of the discussion is concerped with Szego's work. This work
is in two parts. One,he shows that the solution of Zubov's equation can be
reduced to the determination of a matrix, A(x). This technique is similar to
the variable gradient method. Two, Szego constructs a generalized Zubov partial
differential equation. From this equation he is then able to derive meaningful
stability results for a wide class of autonomous systems. He also extends this
work to the determination of the stability properties of certain manifolds in the
Euclidean space, E;.
At the end of the section is a compendium of examples which exemplify

the theories and methods of the above authors.

ZUBOV'S WORK

In reference [i}, Zubov considers an autonomous system defined by
x = £ @, ¢))
where f is specified in Euclidean n-space, En, and is continuously differentiable

up to order 2> 0. A solution of (1) exists for any x (0, x;) = X, in En.
This solution will be continuously differentiable with respect to X, up to order 7.
In system (1), we assume that the trivial solution x = Q exists; that is, f (o) = 0.

Theorem 1 gives the necessary and sufficient conditions for a region A about o

to be a region of asymptotic stability of o. (This region A is an open, connected

set about x = 0.)
Theorem 1

"In order that region A be a region of asymptotic stability of x = 0 of the
system (1), it is necessary and sufficient that there exist functions V(x) and }5 x),
which héve the following properties:
1) V is specified and continuous in A,

2) ¢ is specified and continuous in Ep,




3) forallxinEy, 0 <V <1ifx # 0,
4) for all x in E,, %)Oifgg}é o,

5) for any Xz. > 0, there exist positive constants X, and °<| such that

V‘(}E) > X| for /’?_{.” > Xa and%@) > °<, for //5//>/a,2’
6) V and 7‘——* 0 as //g/__;. 0,

7) if Y is a point on the boundary of A and ’[ _Y_F” % 0, then

lim V (x) = 13 and if /}g{_//———» + o0 for x in A, then V(x) —» 1.
(x —~ 1)
2
8)  |dv(x(t, xo) = - ;é (B (1-V(x)) / 1+ }E £ (® ,
dt i=1 i
t=o0

where the function ;zﬁ can always be selected such that the function V(x) is
continuously differentiable over all its arguments in region A up to and
;including order ﬂ M

| Corollary 1 states that the equation of the boundary of the region of

. asymptotic stability, A, can be obtained, at least in principle. Corollary 2
"deals with asymptotically stable systems on the whole.

Corollary 1

'f "Consider the set of all points x such that 1 - V(») = >\ ’

X belonging to A, 0< \<|. This set, for each >\ » represents a closed
.surface S/\ , which bounds a region G)\ , containing the point x = Q.
Surface S/\ forms a section of the region A; that is, any integral curve
of system (1) intersects S}\ only once, from the outside of region 6,\ to
1, is the boundary of region A, and Sy

the inside. The surface P

V =
coincides with the point x = 0."



Corollary 2

"The trivial solution of system (1) is called asymptotically stable in the
whole, if the region A equals E,; that is, if x(t, X,) —» Qas t — oo
for any x,."

The extension of theorem 1 to the concept of asymptotic stability in the

large is considered in the next theorem.
Theorem 2
"In order that the trivial solutiocn of (1) be asymptotically stable in the
whole, it is necessary and sufficlent that there exist two functions Vl(gt_)
and % (¥), which have the following properties:

1) the functions V1 and f are specified in E, and continuous there, and

V1@= % @= 0;
2) vy >0for_§#0andvl——++°° as //35//-—4»00 and

$ (® > Owhenx # 0;

3) for any X?_ > O there exists a positive comstant Xl such that
¢ > Y,  when 0, < x|
4) {T1=-¢/1+f%+._..+f.% .

It should be noted that the necessary and sufficient conditions for the

asymptotic stability of a system in the whole were first given by Barbashin
and Krasovskii. As applied to system (1), these conditions were formulated

only for ) > |.

Corollary 3

"if 2 > | and if x = 0 of system (1) is asymptotically stable, then
m 2 2 2
\'f 2
E 5;: fi(§)=~¢(§)\/l+f1@) +... +£f &® )
i=1
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has a unique continuously-differentiable solution, determined by V(@)= D,
specified when x belongs to A and satisfying the conditions of Theorem 1

for certain %'s. It is sufficient that ¢ (x) has the property

0o
3
% (x(t, 2‘.0)) dt < + =0
o
at sufficiently small "*}'{W” . Thus, the ¢depends on the character of
decrease in x(t, _};:o) as { —— oo, (as exemplified in the following

remarks)."

Remarks About the Above Theorems

-pt
(1) If it is known that ﬂ_§(t, 2_:0)“ £ c¢c € ,¢c >0, P>0 s

for sufficient small | x, ] , then ¢ can be chosen such that
m
55(15) < //z// ,m >0
(2) 1If it is known that "3{_ (t, 3{_0)" £t , &>0

m

for t > T, then ¢ can be chosen such that ;ZfQ:_) < “9_{", me<>]| .

(3) Examples of generating V-functions for various systems using the above
partial differential equation for V are given im the back of this section.

We now consider a more practical theorem of Zubqv's; namely, we consider

a system of differential eqﬁations, as in (1), in which the functions £(x) are
known only approximately. That is, we are interested in whether the qualitative
estimate of x(t, X,) is stable with respect to small changes of the functions
£(x). Consider the system defined by

| i=£@ +RG, 0, )
where f£(x) is continuously differentiable and R is continuous such that (4)

satisfies the conditions of existence and uniqueness of solutions.



Theorem 3
"If the system (1) has an asymptotically stable trivial solution, having
a certain region of asymptotic stability A, it is possible to obtain for the
functions Rj(x,t) an upper bound Rj(x) such that |Rj(x, t)| < Ri(x) in some
regi;n about the equilibrium point. Therefore, the system in (4)has an asymptotically
stable trivial solution contained in region 'An”

The proof of Theorem 3 relies on the results of Theorem 1. QOther remarks

about Theorem 3 are:

(1) if the functions Ry (x, t) are such that |R1(§, t),'<‘Ri(§) only in the
region A, the statement of Theorem 3 still remains valid;

(2) 1if the region A coincides with the entire space, then x = 0 of system (4)
is also asymptotically stable in the whole.
Another application of Theorem 1 is the following theorem giving the

conditions for which it is possible to define the solutions of (1) for

t belonging to (— == , o0 ] .

Theorem 4

"In order for any integral curve x(t, 50), X, belenging to the region A

of system (1), to be defined for t belonging to (~=¢, o0 ), it is necessary and

sufficient that all of the conditions of Theorem 1 be satisfied and that

;5(5)/ 1+f12 +.°.+fr% < K<eoo, for all t ."

Theorem 1 also makes it possible to establish the analytic form of the
right halves of the system (1), having a previously specified region A. Thus,
we specify that A ig any region containing a sufficiently small neighbor-
hood of x = 0. The.boundary of A is denoted by S. Region A is such that there

exists a V-function with the following properties:




1) V(O =0,0 < V < 1 for x in A;

2) the equation| —V = X\ » 0 € XN <« | , defines a closed
surface S'\ which bounds a region G,\ defined by V<< | =M H

3) V — +1 as “3{_ - _x*H ————— 0, where x* is on the boundary
of A and is not Q.

 We determine the right halves, £(x), of (1) from the linear equations

P@E® = q® (5
AV
where P;; = Qx; and q; = - %1‘(1-\!) . The

function fél is specified in E, %1(0) = 0, and %1 > <X >0 for
” X ” > @ > 0 . We further assume that the functions Psi> 9dg»

$22,3,.. .,nyi=1, . . ., n are so chosen that the system (5) has a solution
_g = £* such that |

; - X =8 (@ (6)
has a tlrivial soluti:on and satisfies the conditions of existence and uniqueness

in A.

Theorem 5

"The trivial solution of system (6) has a region of asymptotic stability A,
as defined above; and, conversely, if the system (1) has an asymptotically
stable trivial solution with a region A, then its right halves can be found
from the linear system in (5). (An example of this theorem is given in the
back of this section)."

We now consider systems of differential equations, equation (1), with

homogeneous right sides, f(x). The definition of a function which is homogeneous

2
of rational order/f= q , where q is odd, is as follows: "f(x) is

homogeneous of order//provided the equality f(cx) = c”f@ holds. The
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function is called positive-homogeneous if ¢ > 0 and ,L/ is arbitrary.”" It

is known that if a homogeneous or positive-homogeneous function f is continu-
ously differentiable of order 7 >1 over all its arguments, then it

satisfies the linear partial differential equation

" oy
gl x - £
ax; 1 A5 )]
i=1
whereH is the index of homogeneity of the function f. Also, if 7)% 2,

then the function 9 f is also homogeneous of order/q - 1, which can
Qxi H
be verified by differentiating f (cx) = ¢ f(x) with respect to x

in
Let us consider a system of differential equations
")
x =f @, (8)
()]
where f is continuously differentiable in all its arguments to order 7)>0

and is homogeneous of order H,H > 0. We assume that system (8) has a trivial
solution x = 0, It can be shown that if x = Q0 of (8) is asymptotically stable,
then for a sufficiently broad class of systems the following inequality holds

-
£ At fort > T and “_}_{o” =1, (9)

“.}s(t,zo)|
where A; is a sufficiently large positive constant and ©X a sufficiently

small positive quantity. The expression x(t, 3{_0) is the solution of the

init:f_.al value problem of the system (8).

Theorem 6

"If ghe system (8) is such that its solutions satisfy the inequality (9),
then there exists two functions V and W, specified in E,, and having the
following properties:
1) V and -W are positive definite;
2) +W is positive-homogeneous of order m, and V is positive-homogeneous of

order m + 1 -H, where m is a sufficiently large positive number;
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3) V d8 continuously differentiable along the integral curves of (8);

that is, V(x(t, x,) ) has a continuous derivative V=W (From Liapunov's

work we see that conditions 1, 2 and 3 are both necessary and sufficient for
the asymptotic stability of the asymptotic stability of the trivial solution
of system (8) satisfying inequality (9).)"

It can also be shown that if 7}7.3, | for system (8), then V and W

satisfy the system of partial differential equations

| i av f(m W }n__ 2 - 1 (10)
vli:lé__x_j_. i = ’i=]_ ng. X3 —(m-/el‘f')v,

where m is the index of homogeneity of W and is a sufficiently large positive
number. When n = 2, the function‘V?xl, x2) for 7’ > | can always be found

in closed form. In the next paragraph we verify this stgtement.,

Second Order Case.

The system of equations for V(x, , xz) is given by:

) )
Qv £1 + 2y £, = W
ax 1 ax2
'_a_y_ X] + -__a_y_XZ =(m-/f‘+1)V.
axy dx;
From these we can solve for ‘EL!, dV; that is:
Qxl 2X2
dV = AV + B,
?Xl (11)
4V =CV +D
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where
)
-(m+1 -4) £2 ; B = Wx2
A= xfp- x5, xof &) - % £
)
c -(m +1 "H)fl H WX'I
= D = -
) 1) 7)) )
X1f2 H - Xzfl w lez(// - Xsztf

The general solution of the first equation is given by

B X1 X1 X1
V = exp A(g, X2) clg % (XZ) + B(g ,xz)eXP "f A(Y’XZ)JY Jg
X X X1
| 10 1L 10 0 .
Choose 74 (x7) such that the function V constructed above satisfies the
'
second equation, axz =CV + D , and in addition, we

demand that V(0, 0) = O.

For simplicity, we use the following notation:

Xq
M = exp f A, xd el
X10
X, X1
My = M f B(f , xp) exp { - f A(?l, xz)J~2 Jg
x5 10

which gives the following formula for V,
V= ;A(xz) + M.

Inserting this formula into P V=CV+D , we obtain
“axy

————

(l¢ =N1¢ +N2’
%2

.
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where
Ny = |CMp - LY
i d¥2 |/ My
"Np = |CMp +D - aM2
axq|/M2.
L x2
It can be established that 9__1‘_1_1_ - Q_Ij_g_ = 0 .
gxl 3x1 '

The géneral solution of the above equation for % is of the form
By = ¥ B + Py (xp)
where X is an arbitrary constant. If X is defined by
X = - {Pz(O)& HZ/H1}/ , for x] = x3 = 0, then the
| P1 (o)

function _
V(x) %) "Xllll’l + M2y + My (12)

will _satisfy system (11) and the condition that V = O when %; = x, = O.

Equation (12) gives the necessary and sufficient condition for the
asymptotic stability of the trivial solution of system (8) for n = 2, and it is
asymptotically stab}e if ang_lvzonly if the function V(xl, x2) is positive
definite. It is un@grsgqod that'w(xl, x3) is negative definite and homogeneous
of order M >/f—1 . |

From reference L-Z] the regions of attraction of self-oscillations of

nonlinear systems are investigated using Zubov's partial differential
equation to determine the V-function.
Let us consider the equation
Pefw, (13)
whose right-hand members are defined in E,. We assume that the system (13)

has a periodic solution x =X (t) of period T.

e o mm
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Definition

"A periodic solution X(t) of the system (13) is called asymptotically

stable if for any € > 0 there exists a 3§ >0 sugh that if
8(50) < § , then e[:_}g (tz-] < € fort > O
and, besides, e[g(ti' —_— 0 as t — o0 ."

The function e is the distance from the transient process in the

system (13) to the periodic behavior:

n 2
P =t€i[nf'lj = [x, - 500 ] . (14)
o, L

The Russian Academician A.A. Andronov called asymptotically stable

periodic behaviors self-oscillatory behaviors. It is known that the nonlinear

system (13) may have self-oscillations, while the linear systems never have

them.

Definition

"The set A of all points x, of the n-dimensional space is called the

region of attraction of self-oscillation, if for x(0) = x  belonging to A,
it follows thatel-__lg (tj—> 0O as t —p 00 , where x(t)

is the tranéient process in (13)."
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It is assumed that to every point of the n-dimensional space X, there

corresponds a solution of (13), x = x(t, 50)’ satisfying the initial condi-
tions x(0) = x, . We also assume that x(t, xX,) 1s continuous with

respect to t and x,.

Theorem 7

"In order that region A, consisting of entire trajectories of system (13)
and containing the set e@ < £ for sufficiently small & , be the
region of attraction of self-oscillations of the system (13), it is necessary
and sufficient that there exist two functions V and W satisfying the
conditions:
1) V is given in A and continuous therej
2) W is given in E, andj
3) V and W vanish at points on the curve E{;

4) YV outside the curve _?_(_" takes on positive values from (0, +1); the

function W is positive and satisfies W{x > & > 0 for
& >o :
ew > © >0
5) V=-wWwQ@ -V / 1+f12 + . ..+ fm2 ; (15)
~F %

6) the function V approaches 1 as x approaches %, where X denotes a

H]

finite point of the boundary of the region A."

Remark 1
In equation (15) we can replace V by Vi , where V; = - L'n(l -V). As

a result of this substitution (15) becomes

o n
Vi =-W /1 + ¥ £ (16)
=1 1
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Here V; , in region A, will take on the positive values from (0, =© ), except on

the self-oscillations. The function V; —> + << as one approaches
a finite or infinite point on the boundary of A. If the function V; is

continuously differentiable with respect to its arguments, then (16)

becomes
n n
S w1 fi=—W/:+Z £2 . (17)
i=1 'axi i=1 i

Remark 2

1f system (13) has self-oscillations, then it may be shown that A is
an open and connected set. Also, it may be shown that on the boundary of
region A are situated entire trajectories of system (13); that is, 1if the
integral curve of (13) begins on the boundary of the region A, then it

remains on it with increasing and decreasing time.

Remark 3

In the back of this section we consider a third-order system which is
simple but at the same time it contains the generality which is characteris-
tic of the behavior of integral curves in nonlinear systems in the preseace
of self-oscillations.

In reference [I] Zubov applies his partial differential equation
technique to obtain Liapunov functions to be used in the analysis of uniformly

asymptotically stable trivial solutions of systems of non-stationary differential

equations.

Let us consider the following system:
X = £(x, t), (18)
where the right half is specified for x belonging to E; and — oo <t < o0

and satisfies conditions sufficient to guarantee the existence of a unique

¢




%
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solution for the initial value problem corresponding to (18). The initial

value of x, x, , can be any point in E, and the initial time satisfies
~o0 < to < oo . We also assume that the solution of the imnitial

value problem x(t, x,, t,), depends continuously on'>_<0 and t,; and further
we assume that x =0 is a trivial solution of (18); that is, £(0, t) =0

for all t.

Definition
"The trivial solution, x = O, of (18) is stable in the sense of
Liapunov, if for any € > O there exists a J‘ > O such that when
I’zoll < $§ and t, belongs to ( -00, 00 ), we have
I'E(t’ﬁo’ to)[' < € for t > t,. If, furthermore

" x(t, §o,to)ll————> 0 as t —» + o0 » then x =0 is

asymptotically stable."

Definition
"If x = 0 is asymptotically stable, then the set of all points (%5, tg)
such that Iiﬁ(t, Xgs t)” —_— 0 as t —b» 00 is called the

region A of the asymptotic stability of (50 =0)."

Definition
"An asymptotically stable trivial solution of (18) is called uniformly

asymptotically stable if |'§(t, Xy > to)“ —% 0 as t - to —>» 00

;.‘.

uniformly with respect to t, belonging to ( - 00, 60 ) and l’éo” < é, >

where ( € ) corresponds to the definition of stability."

Definition
"An asymptotically stable trivial solution of (18) is called uniformly

attracting if for any h > O , and for h <« <§ one can indicate a
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T > O and ©& > 0 such that “_)_g(t,go, to)” > oK
when t belongs to (to, to + T) for any to, in ( -00,00 )

and for h £ “_)50” < & .

We now list several of Zubov's theorems which are concerned with the

stability of nonautonomous systems. The first two theorems propose certain

differential equations which define V-functions used in the stability
analysis. The third theorem deals with a gerneral system in which a per-
sistent disturbance is present. Zubov's theory shows that his 'partial
differential equation' method can be extended to nonautonomous systems
but the actual analytic solution of the differertial equations is still

very difficult to obtain.

Theorem 8
"If any solution of the system (18) is defined for - o006 < t < 00 ,
then in order that a region A, which contains a sufficiently small neighbor-
hood of the set x = 0 for all t in ( - 00, 60 ), be a region of asymptotic
stability of the uniformly asymptotically stable and uniformly attracting
trivial solution of (18), it is necessary and sufficient that there exist
two functions V(x, t) and ?f {(x, t) having the properties:
(1) V is specified and continuous in Aj ;5 is specified and continuous
in -o00 € t <« o0 and E;;
(2) o <Kv <+ 1 ‘ for {t, x) in A ;‘ >0 for x in E,
-00 <t < oo if //_:5//?4 o
(3) for any {2 > 0 , there exists values Xl and o< ; such that V > X]_
for "_:_:_" >/52 and -~o00 <t < oo ;-¢>°ﬁ

for H!£||>/b/2 and -00 <t < 00 ;
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(&) f and V—» 0 uniformly in t as "5” — 0
(5) 1f (X, t) is a point on the boundary of A, =] # o , then

limV =+ 1 , for (x, t) belonging to A, as ”5 -%|] — o0
and ’t-'{: | — 0 H - -

(6) the total derivative of V, with reference to (18), satisfies the

equation

V= - 75(5, £ (1 - V)" (19)

Theorem 9

"In order for a certain region A, containing a sufficiently small
vicinity of the axis x =0 and — e0 ¢ t < o0 » to be a region
of asymptotic stability of the trivial solution of (18), it is sufficient,
and in the case

n 2
> f M for -o0 ¢

=1 i

oo h MM < ~om o

v 7 ~ N
y AL NV ey, U v

154

2 1] i -
<oe, x| <

b

it is also necessary, that there exist two functions V and ¢ » having the
properties:
(1) conditions 1 - 5 of Theorem 8 are satisfied;

‘(2) the total derivative, V, satisfies

.« : n 2 ”
vV ="— }5(1-v) 1+S £, .
i=1 l (20)
- Note
If it is assumed that f(x, t), in (18) and %(x, t) are differentiable
*

- of a sufficiently high order, then V in equations (19) and (20) can be

written as

. n - £ 2_\_’_ .
Vi igl X Iz, ) + Q% (21)

>
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Thus, V can be found as a solution of (19) and (21), or (20) and (21), and
satisfying the condition V(Q0, t) = 0. We also note that if A coincides
with the entire space of points (x, t), except x = 0 and — 00 < + < o0 s
then the trivial solution of (18) is asymptotically stable in the whole.

In Theorem 10, we examine the system (18) under the influence of a

persistent disturbance r(x, t); that is, we consider the equation

x =f@& t) + xx, t). (22)
The vector function r is assumed to satisfy the conditions required for the
existence of a unique solution to the initial value problem. If the vector
function f is continuously differentiable over all the arguments, and if
x =0, the triviai solution of (18), is uniformly asymptotically stable,
one can show that there exists an upper limit for r(x, t) such that when
Iril <~r* (x, t) the trivial solution of (22) will be
asymptotically stable and will have the same region of asymptotic stability
as the trivial solution of (18). Theorem 10 deals with the boundedness of
the solutions of (22) aséuming that the trivial solution of (18) is asymp-
totically stable.
Theorem 10

"If the trivial solution (18) is uniformly asymptotically stable, if

the condition

2

n
S f LM, M
i=1 i

constant (23)

is satisfied for t belonging to ( — 00, 00 ) and /I-’-‘-” < h , and if
there exists asymptotic stability in the whole in system (18), then for a

continuously differentiable f(x, t) in (18) there exists a function Rl(ﬁ, t)

such that for all r(x, t) any solution of (22) will be bounded when the

following is true:




—
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y

< and t in ( - oo, 00).

|7| £ R, G t) for [z > H

WORK OF ZUBOV, MARGOLIS, VOGT, AND RODDEN

In the next series of paragraphs we will consider the application of
Zubov'g work to the computationm of V-functions and determination of regionms
of asymptotic stability through the use of numerical methods and computers.
His method is applied to the partial differential equations (2), (19) and (20).

The form of the V-function used in Zubov's analysis is:
(24)

where V, is homogeneous of degree m in X1 5> X2 5 . » Xn. This power series
for V will converge in a sufficiently small neighborhood of x = 0.

The differential equations which are considered by this method of analysis

are: My1,...,Mp) My

P1

(25)
P (M, ... , M) M,

ff_+_.:;°+u;>/2 5 .. X

L1

. th .
where B is a constant n— order matrix and the P's are constant coefficients.

We assume that the series in (25) are convergent and that B is "asymptotically
stable'; that is, the real parts of the eigenvalues of B are negative. The
discussion which follows is taken from references {1}, [4}, {5 and [6].

The following outline of Zubov's work as applied to second order systems

was given in reference [4}. The method of analysis for higher order systems

is similar to the second order case. The system being considered is

;{ = fl(x: Y)

(26)

Lo
I

= £,(x, y).
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The basic 'parti’al differential equation for V is

?ﬂfl + 31 fp =- O, y)/ 1 + f12 +f22 (1-v), (27)

ax 2y
where @ is a positive definite or positive semidefinite form of degree
24, M > 1 . Given O, it can be proved that V has a unique

power series representation:

n

V(x,y) = Volx,y) + . . . + Vpx,y) +. ..

0. (28)

© V(0,0)
Zubov also shows that if the solutions of (26) can be analytically continued
for all real t, then (27) can be written in the following form:

Av £, + AV £, =- By A -V

ax QY (29)
where ¢is a quadratic form, (the V's in equations (27) and (29) are
obviously different). As in (27), the V satisfying (29) for a given 75 is
unique and can be expanded in the power series given in equations (28).

Substituting equation (28) into equation (29) gives the following

recursion relationships:

“ax ay (30)
dvm £11 4 Q¥m f21 = Ra(x1y),
ax ay
"form=3, 4, ...... . In equations (30), the }{qunction is the quadratic
component of
( = - Q(x,y) 1+f2+f2%=
x,y) - Xy 1 2
(31)

;52 (x,y) +)“3(x,‘y) + ... +)ﬁm(x,y)+. .o
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th
where fmis a homogeneous form of m power in x and y; the Vz(x, y) is a

positive definite form defined in ¢28); £1; and fg1 are given by

fll = 4aj] X + ajoy » .
(32)

| f21 = @y x + ayy,
which are the linear terms in fnl and f, of (26); R, is a known function of
the previously computed Vo, V3, ... , V.1 functions; and the defining
equation for R, as given in [6), is
Ry = - %m’* 2 ¢ Ve +
jtk=m J
, mj mg
-2 V2 Pieimyxyr 94 (33)
jH=m+l (m +m, = j ax
+
2 ne, e a2 3 |y
2\, 12 y —-— k
ml + m2 = j ay
where j, k, m = 2, 3, 4, ... and the P's are given by equation (25).
Equation (29) can be transformed into the following if V is replaced by
v, =-lnt -v;
(34)
that is, (29) becomes
dw 5+ dwrs day). (35)
ax Ay

When 0 € V < 1,V satisfies 0 £ V, < oo
In the list of theorems)wh-ich are concerned with the application of Zubov's .

’Approximate Methods in the analysis of the stability of second order systems, the

following definitions are required.

Definition 1

"Region A is defined to be the domain of asymptotic stability of system (26)."
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Definition 2

"G()\) is the set of points (x, y) in the phase plane which satisfy the
inequality 0 £ V(x, 3) < )\ for any >\ belonging to (0, 1)."

Definition 3 (Modified in{6] )

"The set W, consists of all points of zero 62 which define boundaries

between regions of positive and negative 62, while excluding from W, those

[ [
points of zero V. which lie in surrounding regions of V, with constant sign,

2 2

V, being of constant sign except for these exceptional points. The set
Wl contains those exceptional points. Designate by C1 the smallest value of V2 on
o a8 the largest value of V2 on Wz. (The reason for the existence of

set Wy is that it is sometimes convenient to use semidefinitea%'s in

set W2, and C

(29) aktd (35).)"

pefinition 4

!
1

"The region A is bounded if there exists a positive constant R such

that”'x2 + y2 = R encloses AY

[Definition 5
(n) n
{ "Let V (x, y) equal the finite sum, 3 Vi (x,}) . Then as
i-2
n
in [6], we define Wz( ) (x, y) as all the points (x, y) on which

ﬁ(n) (x, y) = 0, other than those (set Wl(n) ) for which

. ()
Vn(x + 8k, y + dy) 20

or '
6(n)(x + J;, y + Jy) >0
for a1l §, and d, infinitesimally small.
Let Cl(n) be the minimum of V(n)on wz(nz and let A(n) be all (x, y)
(m)

such v < ¢
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We now give a brief outline in "theorem form'", of Zubov's Construction

Technique for obtaining approximations to the domain of asymptotic stability.

Theorem 1
"If (x, y) belongs to region A of definition 1, then the V-function
defined by equation (29) satisfies the inequality 0 < V < 1. Thus, we

also have V, of equation (35)° satisfying 0 & V, <o0."

Theorem 2

"If (g, &3 ) is a boundary point of A and (x, y) belongs to A, then
then Lim Vix, y) =1 5 ., or _ Lim v* (x,y) = ©o0."
=,4) — (g,-rl) ' (x, y) ——(gnz)
Theorem 3

"If X\ belongs to (0, 1), then set G( )\ ) is a bounded domain in domain A."

Theorem 4
"Ihe curve V = 1 is an integral curve of system (26)."
Theorem 5

"If f{ is given, then the solution, V, of (29) is unique in domain A."

Theorem 6

"The boundary of A is a family of curves defined by V = 1."

Tileorem 7

"If x = 0; y = 0 is?asymptotically stable in the whole, then V < 1 for
all (x, y) in ‘the phase plane."
Theorem 8 |

"Let V be the solution of (29). ThenV=A, A equal a constant,

is the solution of the systegy x = dV and y = - dvy
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such that if )\1..4 >\2 E , them V = >\ 1 is enclosed inside
V= )\ 2."

Theorem 9

"For any system x = f; (x, y) and }" = f5(x, y) there can be related an
entire class of systems of the form X = Qv)i =- dy
ady ax
where V depends upon the form of % . (From the previous theorem each closed

curve V = >\ 1 has no parts in common with V = >\2_ if >\1 ¥ )\2

Thus, from this result the next conclusion follows.) The boundary of domain A
will be the only common integral curve of the two systems for 0 < >\ <1 "

Theorem 9 is a"yery importapt theorem in obtaining approximate domains
of asymptotic stability. In references [4] and [5] , Theorem 9 and the

"approximation' theorems given below are applied to Van-der-Pol's equation,

other second-order eq'uat:ions; and a third-order equation.

Theorem 10
"Let L be an integral curve of (26) which lies on the boundary of A. Then

there exists a value C, such that V; = C; is a curve which is tangent to L at

(X5 ¥o) "

Theorem 11

"The curve Vo = C; , of definition 3, is contained in A provided that the
set Wy, for V, < Cy, is not a half-trajectory of the system.”
Theorem 12

"If A is bounded, V, = C; is bounded for any permissible 7§ N
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Theorem 13

"If V, = Ci is unbounded, then A is unbounded."

Theorem 14

"If ¢ in (29) is an admissible function and C, is finite, then domain A

2
is bounded and its boundary lies in the region i £ V, £ C,."

The next theorems are concerned with the ‘higher order approximaéions for
V. As will be pointed out later, these higher order terms need not give
better approximations to domain A than Va.
Thus, the application of Theorems 12,:13 and 14 may give fairly good results

and the higher order terms need not:be'computed.

Theorem 15
"The curve V(n) = Cl( ) ,n=2,3, ... , is contained in A provided that
the set of points Wl(n) for Vv < Cl(n) is not a half-trajectory of the

system."

Theorem 16

"If A is bounded, then V(é) - Clm\ is bounded for any admissible 55
If any V(n) = Cl(n) is unbounde&,fthen A is unbounded. "

Thus, from V(n? = Cl(,n) » we can approximate the region of asymptotic
stability. As m— o0 Cl(n-)——> 1. In references [4) and (5]

second and third order examples were investigated by making use of the above
theorems and electronic computers, In Roddén's work, (5], equaf:ion (29) was called
the "regular" equation and (35) was called the "modified" equation. We will now
discuss the results of these studies.

Both authors, {4] and [5] ,A studied Van-der-Pol's equation,

.o 2 o . 3 2 .
X + €(l-x1)»x1 +x; = 0, x5 =3x; + € (xl-x1/3). For ;é =x," in



- 26 -
(4)

(29) both authors obtained similar results. That is, V

(6)

gave the worst

@ a0

approximation for A, V a better approximation, and then V s

V(u") and V(20)

, , in that order of increasing improvement of the approximate

stability domain, where V(ZO) was very close to the actual domain A. In (9],
Rodden replaced % = x12 by §{= x12 + xz2 . The results in the order of

6 2
best approximation (first V giving the worst approximation) are V( ), V( ), v(lO)“

%V(z)') V(‘ls) ~ V(20>. But for this case, the boundary defined by V(ZO) is not

at all close to the actual boundary of A. The conclusions which can be made from
the above analysis are: (1) the convergence of the series in (28) is not uniform,
(2) the convergence of series (28) may be very slow, and (3) the choice of ¢ in
(29) and (35) greatly influences the accuracy of the approximation to the domain
of asymptotic stability, A. An example from Zubov, [1], shows why conclusion (3)

may often be valid. Let partial differential equation for V be given as:

n 36
> % 8V = 75(5)(1“7)- oo
i=1 axi
n 2
1f 75(35) = 2 Z X , the solution of (36) is
1 i
n 2
V() =1 - exp { -2 x } (37)
| i-1 1) .
n 2 -3/2 n 2
If ¢@)= a1+ 2 x ) ( 2 x ) , the solution of (36) is
i=1 i ’ i=1 i
n 2 %
V() = 1 - exp {(1+ 2 x ) -1}. (38)
, i=1 i

If we seek V(x) in the form of a series solution, (28), equation (37) would
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have a series expansion which would converge in the whole space, while the
series corresponding to (38) would converge in a bounded part of the space.
In reference.(A), Margolis concludes by stating that he is attempting
to program the Zubov stability analysis for the second order problem
% + e(x) x + r(x) x = 0, (39)
where ¢ and r are polynomials or convergent ﬁowé‘r series in X, having non-
zero constant terms. He also mentions the need for further research on
computer programs for higher ordér systems and for nonanalytic nonlinearities.
! To conclude the discussion of this work let us consider some more of
Rodden's numerical results, [5]. He considered the second order example

X =y

3.!=-x-y+'x3.

For the ''regular®™ Zubov equation and with a semidefinite % s ¢ = xz,
he found a lack of uniform convergence to the domain of stability of the

= ‘
sequence {V( )‘g. When he used the "modified" Zubov equation and the same 9{ s
the convergence became more uniform but the rate of convergence to the domain

asymptotic stability was slower. Rodden also studied the second order

-~
VL

system given by

n.2 1
x=x+2x y

]

y=y.

He applied both the regular' and modified Zubov equations with % =2(x2 + y2)

and obtained the same results as in the prévious case; that is, nonuniform

(n) g,

convergence and a slow rate of convergence of the V

Lastly, Rodden considered a third order system defined by

X1 T x

X2 T%x3

. 3
X3 = = b1X3 . (b2 + C2b3 ) X9 - b3x1 - b[‘_ (Xl + Cz X9 1
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In this system the coefficients are positive and it can be shown that a
sufficient condition for global stability of the system is that b;C, > 1,
where“é; is called the "damping term'. Let C,. be the critical value of C,;
that is, bjCy. = 1. Thus, for C, 's satisfying 0 < C, < C,. , the region
of stability of the system is not global. In Rodden's example, Co9 was equal

®) g v®

o CZC/é. He determined V(Z) from both the regular and

2 2
modified Zubov equations for a semidefinite % =% +3x . His conclusions
were the same as in the previous systems; that is, the convergence appears

to be nonuniform and the rate of convergence is slow.

SZEGO'S WORK

In reference [9), Szego investigates the stability properties of the
solution x = 0 of nonlinear autonomous systems by considering the partial
differential equation suggested by Zubov. He proves that this problem can
be reduced to the construction of a matrix A(x) whose elements have the form
aijE aij(xi, xj). The same result was reached in a different wayvin one of
Szegﬁ's earlier papers in which the nonlinearities occurred in polynomial
form. The discussion of this earlier work is considered in another section of
this report. Szego claims that the work in [9] is not limited to the investigation
of only one singular point but can be applied to systems which have several isolated
singular points.

In references [10,11] Szegd introduces a new partial differential
equation for the stability analysis of autonomous control systems. This new
equation turns out to be a generalization of the partial differential equations
of Zubov.

We will first discuss the work of reference [9]. The system being

considered is

x=f® , £@ =0, (40;
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where the usual conditions for existence, uniqueness and continuity of
solutions are satisfied. We seek a function V(x) such that

VW f® = Y® , (41)
where ')l» (x) is any scalar function which satisfies either the condition of
definiteness on the trajectories of (40) or has the form

Y@= 0w g [Ew]. (42)
In (42), @ (x) is definite on the trajectories of the system (40) and
g(x) is indefinite on a closed surface, where we define g [g @)] to be
indeff}.nite on a closed surface if g(0) = 0 and g(u)/u > O . (The equation
g (x) =0 defines a closed, bounded surface.)

The case in which the system is locally stable, equation (42), has been
previously studied by the author and is discussed in anothef section of this
report. In this section, we will discuss the case in which ‘)Z () is definite
on the trajectories of system (40). For stability, not asymptotic stability,
%@ may be zero on the trajectories of the system. Thus, equation (41) is
a partial differential equation analogous to thosé of Zubov.

Szegg assumes that (ﬂ)_r in (41) can be replaced by Xp A(x) where
the elements of A(x) are of the form

aij H aij (x4, XJ')- (43)

Szego invokes the theorem which states that "a necessary and a locally suffi-

cient condition for Zp A(x) to satisfy the equation

3 A® = @, (44)

DG - [ e 201 A 43)

is that the matrix
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be symmetric.” The symmetry of D(x) places the following restrictions on
A:

ay (xi,xj) + Xy aaij (xi ,xj) = aji (xi,xj) + X aaii(xi’xi)‘ . (46)
a %xi 2 X

From equations (41), (43), (44), (45) and (46), the gradient of V can be

determined. By the usual line integration techniques we can obtain V(x); for

example, in the second order system V is given by

V) = f Exlan(xl) + xzalz(xl,xz) } J.xl +§1(X2) s 47)

or

V(x) = j§x1a21(x1,x2) + x2a22(x2)2 clxz + gz(xl),
where g 1 and gzare arbitrary functions. It is possible that for some third
some third and fourth order systems the problem may have to be formulated
in such a way that more than one unknown matrix must be determined. This
problem is briefly discussed in [9].

In order to construct the matrix A(x) which satisfies

)L@) = xr A(®) £(x), we consider the equation:
Y@ =5 A® £@ - 0. 48)

The solutions of (48) define surfaces in the Euclidean space. In order that
7‘ (x) be definite om the trajectories of the system, it must not change sign
across these surfaces. Assuming continuity of y(g), these surfaces correspond
to roots of even order of multiplicity of the equation (48).

Therefore, to construct the matrix A(x) we solve (48) with respect to one

of the components of X, say x;, and require that real roots of this equation

have even order of multiplicity. Geometrically speaking, we require that the
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matrix A(x) to be such that even numbers of surfaces, solutions of (48),
coincide. This fact is illustrated for a third order system in the compendium
of examples. A concluding remark is that the above method for generating

Liapunov functions 1is very similar to the Variable Gradient Method.

We now will discuss Szego's work which is presented in references [10}] and

_[121; This study is limited to the investigation of completely defined systems;
that is, given a control system we wish to determine the stability properties
of the equilibrium point. (This, of course, is really our concern in this
whole report.) Szego claims that the method presented below will work as long
as the Liapunov functions belong to the class of functions which are solutions
of a generalized Zubov partial differential equation.

Given the nonlinear autonomous dynamic system in equation (40), the
problem of stability analysis of x = O is then formally reduced to the
search for a positive definite scalar function }b(g) and a scalar function

v=v (X ,v (=0, such that the partial differential equation

v @@ = - P (49)

is satisfied. The inverse stability theorems guarantee that such scalar
functions )L@ and v(x) exist. But, it is not always practical to search
for a positive definite.)((_). Therefore, a more sensible approach is that
of finding a sufficient condition which guarantees the existence of aJ¢Q§) which
is at least positive definite on the trajectories of (40). Szego's method
gives a procedure to determine )L and v such that (49) is satisfied. 1In the
following paragraphs we discuss the "highlights'" of Szego's method as presented
in reference [10].

First, we consider a scalar function v;(x), v;(@ =0 ; its time derivative

with respect to equation (40) is
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‘.’1=@!~)r.§(?9=X(§),X@) = 0. (50)

Next we look for a‘}&(g) which is definite on the trajectories of (40) and

v
a scalar function@(vl), jlé(s) ds ¢ o0 , such that

YG) =Bvy) - (51)
€

Thus, the differential equation

dot(v) = ¥
J. Vl X(&)

= 80 y (52)

can be integrated. The solution of (52) is given as o & & (v) ¥ A*(x)

and the corresponding time derivative is

ok *
S = X)) £ = det @ vy £
dv1
- de X(_) ¥ @. (53)
dvy
K]
Therefore,o( (x) is definite on the trajectories of (40); and because of
*

the assumptions made aboutX(vi) and vi(x) , & __solves the stability
problem.

Combining equations (50) and (51) gives us the following generalized

Zubov equation, compare (54) with equation (19):

o Ew s Yw - (54)
é(Vl)

The stability results obtained from (54) are summarized in Theorems 1 and 2.
Theorem 1
"The stability theoxy of x = 0 of (40) is reduced to finding the scalar

functions vl(g)y R ‘)LQ() and @(vl) such that vl@_)= 0 , fvl @ (s) ds < ©0O

(o}

and}l@ is definite on the trajectories of (40)."
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Theorem 2

"The solution x = O of (40) is asymptotically stable in a closed, bounded

*
region S, X(x) < § , § >0, if there exist scalar functions v1(®), ¥(x) and
@(vl) satisfying the conditions:

(ii) ’)&(5) is negative definite on the trajectories of (40),

v
1

(iii)f B(s) ds = X(vy) < 09
o

V1
(1v)§<@_)=o<(v,)=/@(s)ds >0inS,x # 0,
[¢]

*
=@ =0
and
) equation (54) is satisfied."
Corollary 1

"The solution x = O of (40) is asymptotically stable in the large if all

the conditions of Theorem 2 are satisfied and

V1
Limot(g) = Limf B (s) ds = ©o0."

I2f— = Jxflse -

Corollary 2
"If all the conditions of Theorem 2 are satisfied with the sign of ¥ (x)

changed, then x = 0 of (40) is completely unstable.”
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We now consider a simplified procedure for constructing Liapunov functions.

We seek a scalar function vy, = v, (%) , vo (@ =0 , such that

‘.12 = (XY-%)T £Q§_) = Q (Vz):

where @ = G(vz) is a bounded scalar function. Thus, we can find a

semidefinite xﬂigvz(g)) = wft(g) such that
da(vy) = mﬂl(vz) = @ 2(vo) ,
dV2 @ (Vz)

is integrable. The solution of (56) is°<2(v2) =x*2 (x)

and the corresponding time derivative is
. %* %*
Xy = XD £ @= NV,

* %*
where \jlf is semidefinite. If no degeneracy occurs, 5‘2 =0

when x 7E 0 , and if

V2
B,s) as < oo,

[o]

thenﬁ3<; (x) is a Liapunov function of (40). Szego proves the

following existence theorem for the solutions of (55), a similar one is

possible for (54).

Theorem 3
"There always exists a scalar function @(vj) such that (55) has a solu-

tion which satisfies v, (0) = 0. In particular if (40) is asymptotically

stable, vy(x) is definite and @(vy) may be chosen so that
4

Q(Vz) = >\V2 ’ Re (>\) <0

Remark
The major difference between (54) and (55) is that the Liapunov function
derived from (54) is never degenerate while the one from (55) may be

degener§§e.

(55)

(56)

(57)




- 35 -

In conclusion, we observe that the essence of Szego's method is the
intveduction of the functions @(vl) and Q(vy) respectively in (54) and (55).
The important consideration is to find a scalar function v = v &, v@@ =0,
such that v has the form @z(V) or y(g)/@(v) , but otherwise is arbitrary.
Thus, we are constructing a Liapunov function by solving a quasi-linear partial
differential equation, (54) and (55), whose right hand side has a well-defined

form.

Change of Variable

Szeg3 considers a change of variable, Z for x, such that one component
.of Z is the scalar function v. The aim of the transformation is that by using
the well-defined form of the right sides of (54) and (55) the stability problem
can be reduced to a search for a scalar functiong = g (é_)‘ , satisfying
satisfying a certain nonlinear partial differential equation. The right hand
side of this partial differential equation is any definite function which
depends on only one component of Z.

Thé results of this transformation applied to (54) and (55) are

respectively (59) and (60):

n Eﬁ_i_ Y(x) . ggi
£ & - jZ_l [aZj £y (Eq = é(xl) Jwi i ¥ F (59)
Xy =$
i X T §i

-

=QWyp),i%1> (60

® ak
£, ) - i* - . 1
i Zl aZj fj (€3] T_—gi’yaw’z
J-—-
x =

where ZK'XK’ K # i and z . =W, | .
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Therefore, the only requirement we have is that the right-hand side of (60)

depends on Wy« Whatever the function O@(w3y) is, we always are able to give

some information about the stability of the system; that is, we can either

determine the stability of x = 0, or we can determine the stability of

some first integral of the system going through the origin. Usually the

solution of the above partial differential equation is difficult; therefore,
* % %*

a more reasonable approach is to choose §; = §; (%), §£ © = 0 s

with unknown coefficients. Then the unknown coefficlents are computed in

such a way that the right-side of (60) is a function of Wy only. Szego gives
*
no general method to get g,i‘ An example of this problem is given at the

end of this section.

In reference [11], Szego discusses some extensions of his work in (10}

by considering some of the structural aspects of the stability investigation of
system (40). The results of this work are summarized in the following thecrem

which gives the stability properties of a manifold, M, in Euclidean space.

Theorem 4
“Consider the dynamical system given by equation (40). If
(1) v(x) is a continuous scalar function with continuous first partials

in the whole space En,

(ii) © (v) is a continuous scalar function,
(iii) M is a manifold on which v(x) = 0,
(iv) ® (v(x)) & 0 at all points of M, 975 0 for x not in M,

(v) the equation

WGl £® = — O

is satisfied in Ej,
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(vi) v® Ow®) > 0inkEy
(vii) the trivial solution, v = 0, of v = — Q(v) is globally asymptotically
stable,
i) (D) a( e M) £ v |
an (e & ) £ |v@| £ bp& W),
where e (x, M) is the Euclidean distance of the point x from the set M,

a(r) and b(r) are positive definite scalar functions, and a(r) satisfies

Lim a(r) = oo . ,
I'—» 00 ’
then, if (I) is satisfied, bim p (x(t), M) = 0 for all initial
t—~ o0 y

conditions; and if (II) is satisfied, M is globally asymptotically stable.
Remarks

We conclude this section with a few remarks about the special cases of the
above theorem. (1) If M is a minimal set»containing the equilibrium
point x = 0, asymmtotin Stéé!li*y ~nF H'imp1ind asymntatic stabhilitv of x = 0.
(2) If n = 2 and M is a closed, bounded curve not containing x = 0, M corre-
sponds to a periodic motion. If M is unbounded, then either all its points
are equilibrium points or M corresponds to a singular solution. (3) Similar
results are obtained if n = 3. (4) The stability problem of (40) is reduced
to the identification of M, and thus reduced to a problem of dimension of

at most n-1, the dimension of M. (5) Examples of this work are given in the

compendium,
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COMPENDIUM OF EXAMPLES

Example 1, [1} .Second Order Case

The defining equations of the system are.

;<=-x + 2x2 y ,
y=-y.

The partial differential equation of Zubov which defines the V-function is

av ) v
ax (-x +2x° y) +ay(-y>=-75(>_<)(l-v)

where fé is taken to be % = xZ + y2 . By direct substitution, one can

verify that a solution of this equation is given by the foilowing:

V(x,y) =1 - expd - 2/2- xz%
o i T S

As Xy —» 1- s,V — 17 . Thus, the curve xy = 1 forms the boundary of the

region of stability about (0, 0). ' That is, for every initial point (%45 ¥o) such
such that X, Yo < 1, the subsequent motion defined by the above system approaches

(0, 0) as8 t—00,

Example 2, [1] Second Order Case

The system is defined by

2/3 1/3 5/3 2/3
-3x + 3a(x/da)  (y/b) '+ 3a(x/a) + 3x (y/b)

]

He
it

£, (x)

2/3 1/3 5/3 2/3
-3y + 3b (y/b) (x/a)  +3b(y/b)  + 3y(x/a)

e
L

= fz(x:y)

The V-function is obtained from the following partial differential equation:

av DV

A 2 2/3
x £ (xy) + Qy fg_(x,y) =-2 4 { (x/a) + (y/b) } (1-v)

where /1 > O. The continuous solution of this equation satisfying

/3
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v(0,0)

0 is given by

H

2/3 2/3 4
Vix,y) =1 - { 1 - (x/a) - (y/b) }

from which it follows that the integral curve, bounding the region of

stability, is defined by

2/3 2/3
(x/a) + (y/b) = 1,

The V-function in this case is not everywhere differentiable, but V is
continuous in the region of asymptotic stability.  The family of sections

of the region of asymptotic stability is given by
2/3 2/37 M
1 - (x/a) - (y/b) = A 3 o< AN<1,

Example 3 1 Second Order Case

The following system has a rest point at (1, 0):

22 + y2)2x + xy,

(x+1) +y

X = (1 - x

g =1 - x2 + y2 - 4yx2

2 (x+1)2 + y2

The corrmsponding partial differential equation has the form

‘g \'/ a x2 + 2 '
°yv - Yy ) 2x +xy ( +.
% (xt1)Z + y2 }

+ Eij[ 1-x2 + y2 - _4yx? =- 2 (x-1)% 4+ -
Ay i 2 (x+1)2 +y2 (:&1)7 +;2-22 a-w.

By substitution, one can verify that

V= x-l»i + 2
(x+1)  +y
is a continuous function which satisfies the above partial differential

equation and the condition V(1, 0) = 0. FromV = 1, we obtain the boundary
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of the region of asymptotic stability for the rest point (1, 0). This boundary
is the y-axis and the region of asymptotic stability is the right half plane.
The equation for the family of cross sections which fill the region of asymptotic
stability are obtained from the equation
Vx,y) =1 = A, 04 \<«l.

The sections are circular, defined by:
2

-2)2
{x+ 1+—}\—§ + y? = 21 - 2/;} - 1.

Example 4, [1] Second Order System

In this example, we consider the system

)
X

cS'(X) + s (y) ,
e (x) ,

]

y
where the right sides of the equations are specified for any x and y and
satisfy the sufficient conditions that guarantee the existence of the unique
solution x (t, X5, Yo) and y (t, X4, Yg) for all
finite values x, and y,, and having a unique rest point at x =y = 0. We also
assume that S(x) and O (x) have signs opposite to the signs of x, and that
‘6 (y) has the same sign as y.

The defining partial differential equation for V is given by
v v
% @ +6) + 3y (O =-4d o aw.
In this case the # (x,y) function which is used is given by
% =8(x) O (x) , from which it follows that %(O,y) = 0 for

any y. It can be shown that Zubov's theory still is valid for this choice

off.
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The function defined by

x y
V(x,y) =1 - exp f 6 (t)dr - &€ (T) dv
[o) (o]

is the solution of the above partial differential equation. If the
X y

integrals,j G (r) dv and 6~ () d> tend to infinity as
o o

, x' —_— 0 and ’y ‘ — o0 , then (0, 0) is asymptotically

stable over the entire space.

Example 5, [1] n-g—l Order System

The following ntl order system is an example of Theorem 3, under
Zubov's work:
I =px+f®,
where P is a constant n-by-n matrix whose eigenvalues all have negative real
pawts. The problem is to find out for which functions f£(x) the trivial
solution x = Q of hhe above system i8 asymptotically stable on the whole.
First, for the linear system _1._;_ = J x we construct the following V - funttion,
given as a positive-definite quadratic form
V=2 A X, A = constant,
and
VW@ -x B X,
B=R, A + R A,

where B is negative definite. Next, we construct the function R(x):



- 42 -

RG@ = - <WGE ?;_1{1 + 2_\1>2}'1

a x4 axy
nv n 2 -1
= - XW Z—l aikxk{1+(§_: aikxk)}

where K= ¢ (x) and -L ¢ X < L < . If

L

2m
ao| < |nol
then the trivial solution of the system é =P x + £ (x) is asymptotically
stable on the whole. A further note can be made; that is, if the functions

f; (x¥) are expanded in series, then the last inequality gives an est’wmate

of the coefficients of these series in terms of the arbitrary quantities

bik and in terms of the coefficilents, Pik , of the linear system.

Example 6, [3] Second Order System

We consider the following system, which was originally studied by Zubov:

¢

Xy = -x +vxé + xl(xlz, +-x22) s

. _ _ 2 2
X, = vxl x, + x2(x1 + %, ).

(In the next example, (7), we will consider this system with persistent disturh-
ances added to the right-halves of the equations.)
In equation (19), under Zubov's work, we let )‘ = 2 (xf + xg )s

that is
v , .. 2N , 2
Axp (-xp +xp +xp[x] +x5]) +xp (xp xpHxp [ +x7]) =

== 2+ A -V .
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Assume that
V1 = ax12 + bx1x2 + cx22 .

Substituting Vi into the partial differential equation gives the following:

2 2
a=g¢=1 and b = 0. Thus, Vj =x;5 +x 3 and
¢ 2 4 2 2 2 2
Vi ==2(x; +x5)( - x - X9 ). Therefore when V; ¥ x; +x9 L 1,
v, <0 ; when Vi® x2 +x2 ® 1
1 1= %1 2 = ’
. = o2 4 2 :
V1 = 0; and when Vi ® % + x5 > 1,v1 > 0 » Thus, the

boundary of the region of aéymptotic stahility is xlz + xzz =1 .

Example 7, {17 Another Application of "Theorem 3"

We consider the second order case defined by

»

2 2
xm-xty+x (& +y) + &y,

. 2 2 |
y=-x-y +y (X +y)+ ¥(x, ¥).

The "first approximation" of the system obtained by disearding the functions

?(x, y) and y(x,y) has a limit cycle x2 + y2 = 1, example 6. The

Liapuncv function for this "first order" system is chosen to be

ve=-lo@-x2 -y?y,
\;=- 2(x2 +y2).
We let
- 1/2
2 2 2v)? /v
Rxy) = 2 +y) 41+ (3% ) + (3y ,
or : :
2 2 2 2 2 2 71
R(x,y) = (x° +y)(M -x" -y)Q +x +y) .
Then, if

[ | < |rey], /)Z<%;y)] < [rap|
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the original system also has a limit cycle. It should be noted that any
other R(x,y) satisfying the conditions of Theorem 3, in Zubov's work, could

have been used.

Example 8, [1] Example of Theorem 5

We consider the curve S (x, y) = 0, which is the boundary of a region A: (0, 0)

belongs to the closure of A and S (x, ¥) < O for (x, y) belonging to A.
If S(0, 0) 7é 0 , we then assume that S (0, 0) = - 1. The general
form of the systems, for which the curve S (x, y) = 0 is an integral curve,
was derived by Erugin, namely:

! ,;‘- fl (x:}'ss) = 2_5 M(":Yi ’
| ay

=28 uxy) + £, (x3.8) ,
ax

where M is any continuous function, and f; = £f, =0 when § = 0. We separate
from this set of systems the class, for which (0, O0) is asymptotically
stable, and the curve S (x, y) = 0 serves as the boundary of the region of
asymptotic stability.

For this purpose, define the following:

Mx, y) =- 0 (s D W (x, ¥)

2w
f1(x,y,8) = 8(x,y) z - b,_(x,y) ay + 85 (x,y) %(x,y) d1(x,y)}

£,(x,7,8) = S(x,7) {J xy) 3% -8 (xy) F ) 4 <x,y)}
ax

where

1
I
(=)

2%
%(o, 0) =W (0, 0) = 2x
0,0) (0,0)




- 45 -
The functions 75 and W are positive definite over the entire plane; the
function b/ is an arbitrary continuously-differentiable function; and the

functions dy (x, y) and dy(x, ¥y) satisfy the relation

)} = 98 ol Ju 3.iw=1,
di(x, y) ) s(x, y) Qx - Qax d2(x, (S (x, )@y Ay
but otherwise are arbitrary continuously-differentiable functions. Also, the
functions S and W are continuously-differentiable for all values of x and y.

+

We now consider the equation

glxg-s(x,y) I:S(x, y) ¢(x, y) d1 (x, y) — X(*’ y) %_W.] +

) Y
+ s Yx, y)‘,,} + 21§ -28 Yx, ) W (x, y) +5 (x, 3o
ay X ay d X X

[X(x, y) %%’ = 8(x, y) fé (x, §y) d2 (x, y)]} = - %(x, yl{l - V‘?.

This equation has a unique continuous golution, defined by the condition

Wix, ¥) |, =
1 - Vv = exp {S(X, y)l V(‘O, 0) = D .

Thus by Zubov's theorems, it has been shown that the system derived by Erugin is

asymptotically stable and the curve S(x, y) = 0 is the boundary of the region
of asymptotic stability. Any solution of this sysflem beginning in the regicn of

asymptotic stability is continuable to the semi-axis t belonging to (-60, 0) if
% is bounded,

Example 9,[1, 27) ‘Stability of a Periodic Solution

From reference [1], Zubov considered the system.

:’{=x+y-x(x2 +y2) = f1(x, y),
. _ 2 2\ -
y=-x+y -y (x +y)=f2(x,y).
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We let

}Z(x, Y)/1+f12 +f22 =2 (1 -x° -‘yzl 2,

Thus, the partial differential equation corresponding to the system is given

by the following:

vy v
x £1(x, y) + 9y f0x, y) = -0 -V) 75/1 +5 48y
=-(1-v)2(@- % - yz)2 .

The function V which satisfies this partial differential equation is

V-l-(x2 +y2) exp 21-x2-y2} s
where V = 0 when x2 + y2 = 1. Therefore, the circle x2 + y2 = ] is a periodic
integral curve. From Theorem 7 in the .taxt of this section it follows that the region
of asymptotic stability of the periodic solution is the entire plane with the
exception of x? + y2 2 1 and the origin. The origin is unstable as one may

see from the linear approximation

x +y ,

. Ne
n

-xXx %+ v,

e
]

whose eigenvalues are 1¥ i.

In reference [2], Zubov considers practically the same system, except

he extends it to three dimensional phase space. The system is defined by

X =x+ y-x(x2 + yz),
§=-x+y-y&* +yh,
2=-2%.

This system has a periodic motion located in the plane Z = 0 and describing

2 2
a circle of unit radius x +y = 1. The partial differential equation

for V is given by the following:
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—vi DV
‘ﬁ{x+y-x(x2 +y2):€+ s-y—{-'x+y-y(x2 +y2)} +

-3va =-) 20+ +yDHa -2 -yH) 2 2
Jz X2 + y2 +2 Z . (1 - V).

This equation differs from the second order case given above, because of the choice

of f . Also, in this case Zubov makes the following substitution:
vl = L'H(l -,

glving the following partial differential equation,

vy P\ ‘
'.B-x_[x+y-x(x2+y2)} o+ ?—yig-x+y-y(x2 +y2)} +

'E.Y.].-E --3_{;-(;2 +y2)}2 {}E+;2 +y22_222.
o2 x2 + y2

The solution of this equation is given by

A4 1s defined at all points in the phase space except on (0, 0, Z), that is,
2 2
the Z-axis; and Vi is zeroonx +y =1, Z =0, Consequently, the periodic

solution of the third order system is a self-oscillation, the region of

attraction of which coincides with the whole phase space, excluding the Z-axis.

Example 10, {4 Second Order Example of Equation (35)
The system i{s defined by o |
}.K = - 2x + 2y4
y=-y

Let 7‘ in equation (35) be given as % = 24(x2 + yz). The linear partial

-differential equation for V, is
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M o +ogty 4 dpe (-

2
55 3 Y= -2 +y) .

The solution of this equation can be obtained by the standard techniques of solving

Lagrange linear partial differential equations. Thus, we have that

v, =6x’ +129% 44yt + 48 .V, —> 00 as
llﬁ"-———b o0 ; therefore, the above system is globally asymptotically
stable.
Example 11, [7. §] Rough Systems of Chetaev

This example is concerned with systems which N.G. Chetaev called
"Rough Systems', A rough system i1s a nonlinear system for which the problem
of stability can be solved correctly by fairly simple approximate methods.
The most interesting of such systems are those for which the problem of the
stability of motion reduces to the consideration of linear equations with
constant coefficients; these will be considered here. The reason for in-
cluding this example in this section is because the V-function for the
linear approximation is obtained from a partial differential equation of the
type found in the text of this.section, that is, equation (35).

Consider the following system of equations:

x = (e +€p x

where C is a constant matrix and the elements of F are bounded real functions
oft,g_forxlz+..,+xj < A and t > to.

The auxiliary system of equations is

EX

=L X
where the eigenvalues of G, X K’ satisfy the following condition: for

arbitrary non-negative integers MK, M, )\1 RERTIRIIR i . A # 7é 0

n

when Mj + . . . + M, 2. Based on this assumption and a known theorem of
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Liapunov, the partial differential equation

ti , )
! E%} (Co1X1 + « « « +Cgn Xy) = = (X1 +. . . + %3 )= U(x)

‘ determines uniquely the following symmetric quadratic form with constant
|

I

i coefficients, agp,

|

| n n

‘ Vel/2 2 3> ag. x4 X .

| S=]1 prml

For sufficlently small values of the parameters &£530, and A > O

and for a small // > 0, the time derivative 6‘ by virtue of the equation

%o

= (g + € F) x, satisfies

) = + EF A + A c + €A

- ""'T E‘T T F+

A
*H.I.} X = %, B x >0, forx,x > 0.

Therefore under certain conditions, the asymptotic stability or instability
of the undisturbed motion ( x = 0) of system x » § x corresponds exactly
with the asymptotic stability and instability of the corresponding nonlinear

system. The quantities & and A, for which there unconditionally exists such

a correspondence, are determined from the n inequalities

hll .« o . hlp

. . > 0)(p=1,2,..°,n)

fp1 - - - Bpp

of Sylvester's theorem, where H = [hij]and,l/ is sufficiently small.

The bounds for A and € determined by the above inequalities can be made

more precise if in the above partial differential equation one considers in
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place of — (x12 + ...+ xj) some other negative-definite form U(x)
with,reai coefficients, This fact was also pointed out in the taxt of this
section.

One can give an estimate of the bounds of the largest and smallest
deviations of the disturbed variables. For this purpose we consider the

[}
extremal values of the derivative V on the surface V = C. From the above

[}
equations, V can be written as

V=W,

I

- W, (€ x + 6F ®
-(ﬂ'rg?-‘.)"'eﬂ'r'!!.
--;_T_:g+6ﬂ,r-_!_‘_:5=1/2x_§_:g.

A result of this work is the following estimate:

Xpx £ c%t_ exp {()\"+e') t},‘

This inequality gives the square of the radius of the sphere into which at

the instant t the point in the perturbed motion x(t) will enter if its initial
value was ()50)'1.(350) = C for t, = 0, remembering t > to. The quantities K, and K,
denote the largest and smallest eigenvalues of AinV = 1/2xp A x. Also €' is a

gufficiently small positive constant and 2 is the largest root of the

equation
n
Vs 1 db 3
/ e x + 9bar x % - >\ asr = 0.
A?’ é = 1 9 Xs é axs T
Example 12, [9} Homogeneous Atomic Reactor Equation

The reactor equations describing a homogeneous atomic reactor with

constant power extraction can be written in the following form:

Z,- — %
.1 ,tz'z

L Z
Z," 1 € = @,
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'I‘bl,eygcaliar; fuﬂction)&(i) =-T-‘3‘"@) | £ (;) o takes the form:

Y@= - 511,752122 - ‘zl‘q;— Zz + 312 1f(31)+ *22*2 £()

It is evident that by chaosing '

Al
L] ., ‘
, Ces,

23a21=°an§1 &11 __gl)_ ‘g_“azz ,

')1«(_) w111 be identzl.cally zero. SRR

I
Al

[

l

’J.‘hus, the A_ (_) mtrix ;Ls given by
A(E) = | EEL 4.: R

1

0 | e

The ‘int_egrability conditions_'lwhi‘éh"‘mét}‘Eg"sgti,sfied by the elements of

A axe
aij <zi, ,) + zi Bat3<z¢,z;> ; <Ei .=.j>+z 2 4{(E4, 2
3 21 - ‘ i‘,."‘l"vll . -a'Ej
As we f..n ea.s'ily'sée, A satis iﬂs theae.cenditien.

For second order svstems the V function has the form

.< 
L

= f vlean + 2‘231‘{2#')-. dz'1"' §1(Z'2) )

f (21321 + Zzazz) d-ZZ + 2({‘)

where §1 and gzare arbitrary functions Therefore, if we let ajp = 2, we have

2t (21 2

V= f(s)ds + Z2
= 27T (e®* —1ds +2Z,,
€ X ‘ . -
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T

< > ° and

‘which is a positive definite scalar function if

21 2 0 . We conclude that the trivial solution 21" 22= 0

is stable for X, € ,T > 0 .
Example 13, |2| Third Ongexr System

Let us consider the third order system of Ingwerson, analyzed here
by the Zubov-Szego Method, given by the equations
X =%
’:2 = X3
. . 3
Xq =-(x1 +bx2) - C x4 = £(x).
The corresponding '}@Q function is
Y@ =280 £ @
= (ag; %) + 4y Xy + a3 x3) Xy +(agp X} +apx, +ay; x3) x3 +
+ (aj3 x; + ay3 %, + a33 x3) £(x).
This scalar function is made definite on the trajectories of the system by
requiring the discriminant of the equation’)ﬁ (x) = O with respect to x5 to

be identically zero. This yields the following two equations:

2 3 3
a1] X1Xg + ay] X9 — ajj xl(xl + bxz) — a,3 xz(xl + bxz) = 0,

3
331 X2 + 3.12 Xl + 322 Xz — 8.33 (Xl + bxz) — C(a13 Xl + 823 XZ) = 0.
If we set aj3 = agy = 0 and a53 = a3,y = 1, then the first of these

two equations gives

]

2
aj] = aj; (x) = xp,

]

2
321 821(}{1’ X2) = 3bX1 + 3b2 x1x2 + b3 Xz .
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Applying the integrability conditions we obtain

&12 + ‘g 312 xl = 321 + D a21 ' xZ’
axg a %2

which when integrated ylelds

ajp = 3b3 x% + 3b2 X1xp + bxlz.

From the second equation, obtained by setting the discriminant of x3 equal
to zero, we obtain the following remiilts after substituting for a31, 819,

2], and ag3t:

833"]) and &22‘b4 xg + C.

Thus, the matrix A(x) becomes

x12 3b3x§ + 3b2x1x2 + bxl2 0
A = 2 2 3 2 .
3bx; + 3b x3x9 + b x% b4 x20 + C 1
0 1 b
Integrating Xp A{x) in a manner similar to example (12) gives the following
for Vv
V() = 1 [xl + bx2] + 1 [cx + 2x2x3 + bx3 J,
4 2
where
o 2

V = x4 (1 - be).
From V and V, it follows that the trivial solution x = 0 of the above third

order system is asymptotically stable for b, ¢ > O and bc -1 > 0.

Example 14,[10] Second Order System

We consider the second order case given by

Ye

'=y s
}.7 = «ay ~ax -X Yy .
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The choice for vy in the equation

v -)4@/@ 1)

is vl = ax + v . The time derivative of v; 1is
. . 2
‘.’1 =ax + y =-x v » Thus, 1f we choose
2 2 2 2
%(p--xvl = -x (ax +Yy) , then

@(vl)- vi. Since x ® 0 and y # 0, andy--ax# 0
are not solutions of the system, then 74(;) is negative definite on the

trajectories. The integral of @ (v1) 1s bounded and nonnegative if v;

is finite, and the integral is unbounded if x is unbounded. Therefore,
by Szegd's Theorem, the equilibrium solution (0, O) is asymptotically

stable.

Example 15, [10] Second Order System

Consider the system
X =y,

. 2 3
y=ax + ax y -y -y,

a > 0.
In this case, choose vl = ax? - y2. The time derivative is
\.71 =2ax;(-2y§=2y2 (1 -vy) . Now, if
’)L(gc_) = 2y2 (1 - v1)2 , then @ (vl) =1 -v;.

Thus,

Vi
K (vq) = f @ (8) ds = vy =~ 1/2 (vlz) s
o

where

A* @ = @2 -y%) — 1/2 (ax? —yH?,
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and = *(x) = 2y% (1 - v1) 2

. % *
Since o 1is positive semidefinite and o 1is indefinite, then

X =y =0 1is unstable.

Example 16,{10, 111 Second Order System

This example shows the advantage of Szego's change of variable technique.

The characteristic system for the second order case is

a8 1
{fl(g’ y) © avy fz (g’ Y)} /g-g- = @(\U‘) .

The system which we consider is

. 3
x = f] (x,y) =y = x,

ge
[ |

fo(x,y) = x — 1/2 y.

Substituting f, and f, into the characteristic system gives
3 3¢ S —
y’ - §- 45 (k—1/2y) = 6 (w) .
g ay s W our

EG,w)  ,£0,0 =0 ;

and substitute into the above equation. Thus, we let

E a/w"+ f(y)

where £ (0) = 0, but f(y) is otherwise undetermined. The characteristic system

]

We will assume the form of §

becomes

gy3/ur+f -2w - 2f - af' fw+ f +
a

+ 1/2 y£' =Q(w).
Using Szego's Theorems as a guideline, we choose 6 (w) = - 2uw.
If we also choose f(y) such that

— 2f + (y/2)f' = o0,



- 56 -

2y3 — af' =0,
a

= 1/2. This gives us §,

namely, § = (l/Jrf) [ w + y4 . If we now go back to the usual form,

W= v and § = x, then we have

and

then we have f(y) = + y4 and a2

v = 2x2 - yl+

where
v = &4 {x x - y3§} = - 2v,
Thus, we conclude that the solution, 2x2 - y4 = 0, 1s globally asymptotically

stable.

In reference [11], 2x2 - y4 = 0 is shown to be a singular solution of the

second order system given in the above discussion. This can be verified if we

write the system in the following form:

dx o 2y -2x ,
dy 2x -y
where 1f u = x/y2 , then
du . 2 - &’ .
dy 2uy -1
2 2 4
We observe that du - O when u~ = 1/2, that is, when 2x~ -y = O.
dy

The equilibrium points of the system are contained in the solution

curve, 2x2 - y4 = 0. In particular, the equilibrium points are
+2
(x = 0, 35/4) and (y = 0, /2) H
and they lie on the branch of the solution curve given by y [ y| = J2 =

The linear approximations of the system in the neighborhood of the

equilibrium points, are
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X

- -ix .
}'v == 1/2y+x ~ for (0, 0) ,
hm-x TV + 32 ¢ T VE/2) x = +V3/4

or

-+ 32
\E/z) y = +2

y= (x + _aﬁ')'_-llz (y +

Thus, from linear stability theory we can show éhat thé origin is a stable node and
the ether equilibrium points are saddle pointé.

A reglon of asymptotie stability around (0, 0) ean be obtained if we consider
the Liapunov function V = 1/2‘(1:2 ‘ +’y2),~ whose derivative along the trajectories
of the system fw... - '+ - ¢

\‘I=-1/2x2-1/2 (x-y)2 + % ys.
In the region Jl 1V e1/262 4y < 0295,V > 0andV < o

therefore, all solutions beginning in S\, L tend toward the origin as

t —s o0,

Example 17, [11] Third Order Case

Conslder the system
xl = Kz
Xg = X3
2
X3 = -x1 =-X9 =-x3 +6€( ~x1 - 2x1x9)x9 +
- 3.2
+ € (1 xl)xa, € >0.
Let a scalar function v be defined by
V“'x1+€x2 -Exlzxz "X3,

where the total time dexivative along the trajectories of the system is

:J=x1 -€%9 +ex12 Xp + Xq = -vVv.
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The conclusion is that the manifold M on which v = 0,

2
M: X3 = - X +6x2 -éxl X9

is asymptotically stable. If this equation for M is substituted into the

system equations, the third equation, ;c3 = f3®, becomes an identity and

the familiar van der Pol equation is obtained:

X1 = X2

2
Xp =-x%x +€xy -€x) x5 .

]

Thus, we conclude that the only equilibrium point, x = 0, of the system
is unstable. But, the system has one asymptotically stable orbit which lies

on the surface M,and that orbit is defined by the Van der Pol's equation.
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BOUNDEDNESS AND DIFFERENTIAL INEQUALITIES

SUMMARY

In this section we discuss the boundedness of solutions of differential equationms.
Boundedness properties are used in the formulation of uniqueness and existence theorems
and in stability studies. The work of Bellman and Yoshizawa make up the major part
of the discussion in this section, although examples are taken from the works of many
other authors.

The application of differential inequalities is discussed since this topic is
certainly strongly related to Liapunov theory. Methods for determining boundedness,
other than differential inequalities, are the monotonicity of the coefficients and the

method of successive approximations.

INTRODUCTION

We will first define many of the terms used by Yoshizawa and give examples to
prove that the definitions are not equivalent or redundant. Next, we will discuss
in detail the work on boundedness due to Yoshizawa. Then, we will discuss the work
primarily due to Bellman. Finally, we give
many examples of "boundedness" problems studied by various authors.

Definitions of Yoshizawa Y9]

We consider the system defined by

x = F (t, x) *)
where x is an n-vector in Ep and F is a given vector field, defined and continuous
in the domain:
A: 0< t < e , Il x1] <« ©o.
A solution of (*) passing through the initial point (to, Xo ) is denoted by

x* = x(t3 X » to ). (**)
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The following terms are used in the work of Yoshizawa.
(a) A solution x* issuing from (t,, X ,)is said to be bounded if there exists a
positive number B such that (| x* || < Bfort > to . This number depends

upon both x, and t, , B = B(x,, t,).

(b) The solutions issuing from the point, defined by t = to, (%0, to) to the right
are said to be equibounded, if for W% \l < , the B in (a) depends only on X

andty, B = B, t o).

(c) The solutions are said to be uniformly bounded if for eacht,, B is determined only

by &, B = B(x).
(d) For the solution x* issuing from (to, X, ) to the right, if there exist positive

numbers B and T such that || x*|| € B fort 3 t, + T, the solutions of (*)

o

are said to be ultimately bounded. B is independent of the particular solution while T

may depend upon the solution. (Here t, is arbitrary).

(e) The solutions issuing from t = to, are said to be equi-ultimately bounded if for
l %)) €< , Tin (d) is dependent only on & and t, .

(f) The solutions are said to be uniformly ultimately bounded if for every to, T is

dependent only on .

(g8) The solutions of (¥) are said to be totally bounded (or bounded under constantly

acting perturbations), if for any X >0, there exist two positive numbers A and B
such that 1f |/ X, l] <o, then || x* || & B. This solution x* is now defined as the
solution of
X = FE(t,® + H, x
where H is a constantly acting perturbation, to, is arbitrary, and t > to. The H -
function must satisfy
e ol < 4,

whenever o < || x I{ ¢ B.




S~ -3 -
The relationships and implications between the various types of boundedness will be
. presented in "theorem-form'" in the subsection devoted to the "Work of Yoshizawa". The

following examples indicate that the above definitions are not equivalent or redundant.

! Examples [9-.\

) (1) Consider the following system in polar coordinates:

| .

g (t,92

|
i . >

| r = g(t,®) r , & = 0",
lwhere

4
g(t,®) = (1+t) sin © 1 . 1
4 2 2 4+ 4 2
sin® + (l-t sin®) 1 + sine 1+ ¢t

The general solution of this system is
r = g(t,8,) r,, 6= &,.

I£©, =wmT, the solution becomes

r = o , © = mi1v 3
1 + t2

and if6, # w T (man integer), the solution is

2
1+ (t-§) 1 +¢ 1 + t

=06

O,

2
where é= 1/sin e,.

Every solution is bounded; but if &, is very near m T, the value of r can be

| -
arbitrarily large whenever t = = ———— ,’the actual value depending on &,.
sin? e,
Thus, the solutions are not equi-bounded.

Note
For linear systems, boundedness and equi-boundedness are equivalent; but the

solutions being equi-bounded does not imply uniformly bounded solutions, as the



following examples demonstrates.
(2) Let

1

[~8

g(t) =
1+ ot -m?

]
—

m

and consider the first order linear differential equation given by

_ _&(E)
* = g(t) x

The solution of this equation passing through (t,, x,) is

X0 . T
—_— g(t) .
g(to )

If t, is made sufficiently large, then g(ty ) is sufficiently small. Thus, the solutions
are not uniformly bounded, even though the solutions are equi-bounded.

The next examples illustrate that equi-ultimate boundedness 1is not equivalent
to uniform ultimate boundedness.

(3) Consider the first order linear differential equation

X
- S ———————
x ==- t + 1

The general solution of this equation is given by

(to + 1) =xo
X = (t +1)

and hence for a positive number R, the solutions are clearly equi-ultimately bounded
(t°‘> R), but not uniformly ultimately bounded.
(4) The solutions of x = - x are clearly uniformly bounded, but they are not
ultimately bounded. |

The following examples illustrate that boundedness and Liapunov stability are
independent concepts.
(5) The solutions of the equation

x = 1,

given by x = ¢ + t, are obviously unbounded but stable in the sense of Liapunov.
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 That is, a small change in the initial conditions produces only a small change in the

value of x for all future events.

(6) The solution of the equation

"
"

-Y‘l/Z x2 + \/ x4 + 4.}(2 ] X
are of the form
Xx = ¢ sin(c t + d).

Thus, the solutions are bounded, but unstable because of the "C" coefficient of t.

WORK OF YOSHIZAWA

Yoshizawa has written extensively in the area of boundedness of solutions for
ordinary differential equationms, [i] to [14-]0 The technique which he follows for
constructing existence, uniqueness and boundedness theorems depends on the construc-
tion of a V- function which is similar to the functions employed by Liapunov in his
work. (For this reason and because J. LaSalle says that Yoshizawa's work holds the
"best promise" in the analysis of time-varying systems, we feel that the following

~discussion has merit in this report.)

The motivation for the reasoning which Yoshizawa uses is presented in references
: [I] and [2'] - A concept which is very important in the development of Yoshizawa's
\

theory is called the total deviation, or the degree of closeness. For the first order

‘differential equation

él = f (xs Y) > | (1)
dx

the total deviation is defined in the following way. Consider a curve y = g(x); then

‘the total deviation of this curve from the solution of (1) is given by

X
f I g'(x) - £ [ X, g(x)] dx .

X0
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By making use of this concept, Yoshizawa is able to construct existence and uniqueness
theorems for systems which may not even have continuously differentiable right-sides.

In [2] » the following system of differential equations is considered:

y = F 3, 2)
¥y = (¥y1 «-+5 ¥n)
E = (fla f2’ LI fn) ’

where the fj are defined in a domain G.. The domain G is defined by:
0 = x < a ; | yi) < by (1=1, ..., n) 3
and the f; satisfy the properties:

(i) £; are Lebesgue measurable in x and are continuous in y; ;
(11) | £ | = M{(x), where M;(x) are Lebesgue integnable over [0, a) ;

(1ii) Sy(x) are the solutions passing through the point P (x ) ¢ & such

p> Yp
that the SL are defined in an interval I, xp e I, Si(xp) = yip and

(x, 81(x), ..., 8,(x)) ¢ &G forx e I ;

(iv) s;j(x) = Yip +fx fi[x, Si(x),... ,Sn(x)] dx.

X
p

We will now consider a uniqueness theorem for the system in (2). Yoshizawa constructs
a V - function by using the above concept of total variation. Let P = (xp s xp) and
Q = (x4 » Yq ) both be points in G such that Xp < Xg-
We then denote by Npqthe family of all functions that are absolutely continuous in
E{P’ xq] , and satisfy
Y (xp) = 3y, 3(xg) = Lg>

where (x, y(x)) € G for all x ¢ [xp, xq_].
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Thus, if y(x) Npq’ then i(x) is summable in [x p’ xq'] . Now define the function D(P,Q)

of P and Q as follows:

D (P, Q) = inf %
y(x) € N | 1 - £ &, » | dx ,
. , %p
where if Xp = X g, then D(P, Q) = ” ¥p ¥ q I' ,» and if x4 % Xy, then D(P, Q) =
D(Q, P).

Theorem 1 [ 2-_]
"The points P = (xp, YI? and Q = (xq , zq) belonging to G lie on the same trajectory

of (2) if and only if D(P, Q) = 0."

Properties of D(P, Q)

(1) Let points P and Q belong to G, xp< xq , then for y(x) & Np we have:

q
q Xq
[ 'L - EG ol exz|y -y [ | ¥ 1) dx
~ XP o Xp
. TP \‘2.. 2.11/2
wnere || M (x) ” = LMl (x) + ... +Mp (x)J . From this inequality we get
X
q ,
D(P, Q) = - - f M(x) dx. (3)
I =5l - I uco |

(2) Let points P, Q, R belong to G and let X, € Xg &%, . Thus, we have

D(P, R) < D(P, Q) + D(Q, R) , (4)

and

JD(P, Q) - D(P, R) , <‘”Y'q - Y| + "fx M(x) dx ” (5)
q

(3) D(P, Q) 2 O and continuocus in P and Q.



Definition of the V - function

Let V (x, y) = D(B, Q) where P is the fixed point and Q is the point (x, y(x)).
Then in region G, V(x, y) 1s a nonnegative continuous function of x and y. This V-function

is now used in the following uniqueness theorem.

Theorem 2 (uniqueness theorem) [2]
"(H) If (1) £y in (2) satisfy f{(x, 0) = O for all i almost everywhere in l'_o, a_x 3
(ii) £3(0, 0 = 0 ,
(C) Then (2) has a unique solution if and only if there exists a V(x, y), defined
over G, such that
Vix, 0) = ©0 forxé[o, a] s
Vix, y) > O fory #» 0 ,
and

‘V(x, xi) - V(x :2.2)‘ <L “ x]_ - x-2" +

X2
+ lf N(x) dx ,,
X1

where | is some constant and N(x) is a nonnegative summable function in [0, a-} N

Example 1
The system is defined by
¥y = E (x, 9 ,
where F satisfies |[E (x, y) || € N(x) || x|]. To prove uniqueness, it is sufficient
to choose V as

X

2
V (x, ¥) = exp { -2 |l 2\ f N((xV) dx} .
o

this V satisfies all the conditions in theorem 2.
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' In reference [_3] » Yoshizawa discusses the nonincreasing solutions of
y'o= £ (x, ¥, ¥") (6)
and presents sufficient conditions for the solutions of (6) to be nonincreasing

and tending to zero.

Theorem 3 [: 3_]

(B) 1If (1) £ (x, y, w) is defined and continuous in the domain o £ x < ©0,
0y < 00, ~00 & W < 00,

(ii) for every ¢ > O, there exists a continuous function V(x, ¥y, w) = V. (x,y,w)
for the domain A, : o € x £c,0 €y <€ ¢, -kew=o, and if V. has continuous
first partials in the interior of Ac,

(ii1) V (x, y, w) > O forw # O, and V(x, y, 0) = O,

(iv) in the interior of A, V satisfies

}y dV DV <
N — + — f (x w) = 0
(V) y = y(x) is a solution of (6) on the interval 0 < a < x < b
satisf{ying the initial conditions y{a ) > O and y' {(a) > O,

(vi) A _ is the domain 0 < x € ¢, 0< v € ¢, k> w > 0, and
V (x, y, w) satisfies
(8)
2V +uw+§—-‘lf(x,y,w)>/0
d X y v

and y'(a) > O,
(C) Then hypotheses (i) and (v) imply that y'(x) > O for [a, b] ; and
hypotheses (i) to (iv) and hypothesis (vi) imply that y'(x) > 0 for (a, b].
The second theorem in [3] cites sufficient conditions for the existence of a

solution ¢f (6). The proof of the theorem is based on the construction of a

V - function.
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Theorem 4 [3]
"(H) If (i) f (x, y, w) is a continuous function in the domain R: 0 £ x < 00,
0 £y € 00, —00 € w < 00,
(11) £ (x, 0, 0) = O for x & [0, 00) and £ (x, y, 0) 2 O for x ¢[ 0, 00)
and y ¢ {0, 00) ,
(iii) for every ¢ > 0, there exists two functions V (x, y, w) = V¢ (%X, ¥y, w) and
U(x, y, w) = U, (x, y, w) defired as follows:
(1) U and V are positive and continuous,
(2) U and V converge uniformly to zero as w ——% - 00, in region
Re: 0 = x € ¢,0 € y £ ¢c,vwvg -k

(3) 1in the interior of R; they have continuous first partials which

satisfy
31 + :‘; w+§z f(x, y, wy = 0, ©
and |
(10
2U + 23U w+23U f(x,y,w) > 0,
QX oy v
(C) Then, for every yo > 0, there exists at least one solution of (6) defined
LO, 00), satisfying the initial condition y(0) = Y, » and satisfying the inequalities
y(x) 2 0 and y'(x) & 0." (11

We now state the main result of reference E3__] . This result was obtained

by making use of the previous theorems.

Theorem 5 [:3]
(H) If (1) f£(x,y, w) is a continuous function in R,

(1i) for every pair of constants c; and ¢y , 0 & ¢ & ¢, , there exists

a positive continuous function V (y, w) in R* : c] Sy Scy, W < -k,
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(iii) V has continuous first partial derivatives in the interior of R%*,
converging uniformly to zero for ¢; € y £ ¢ and when w ~——9 - 0O ,

(iv) V satisfies the following in the interior of R* and for 0 < x <& 0O

2V ¢+ 2

S——

y

<3

f (X, Y W) >/ o, (12)

\\ %
£

(v) for every pair of constants 0 < a] < ap , there exists a positive

continuous function U(x, v, w) in R: ! Sx< 00,3 &€ y& aj,

-

-a2$W < 0,

(vi) U converges uniformly to zero for aj

IN
<

IN
IN
£

in
o

az, -az
when X = 00,

(vii) in the interior of E, U has continuous first partial derivatives and

satisfies
(13)
ig+§_§w +ﬂ f(x;}’:w)>/ 0,
d x 3y oV
(C) Then, for any solutiony = y(x) of (6) on0 < x < O satisfying y(x) > O and
y'{x) € 0, we have iim yi{x) = 0.
x=—>F o0
In reference ES], Yoshizawa employs V - functions to give sufficient conditions
for the ultimate boundedness of solutions of a nonlinear differential equation.
He also derives sufficient conditions for a solution of the nonlinear system to
be periodic. The systems which he studies is given by
x=£(t, x, y)
(14)

57: g(t’ X, y> Py

where f and g are continuous in the domain,
A : 0=t < ©,-®0®<x<c 0, -0Ly< ™

Before we look at the boundedness of the solutions of (14), consider the following

lemmas.
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Lemma 1

".et Ay and By be positive constants used to define domain U:
1 1

‘x,<A1 , |yl « By.

Suppose there exists a V - function continuous over the domainijy: 0 € t <& 00,
(x, yJ € U C, where Uc is the complement of U. Let V satisfy the following
conditions:
1) vix, y) > o0,
(2) V(x, y) —p 0, uniformly, for y and x respectively when x or y becomes

infinite,
(3) V(x, y) satisfies locally the Lipshitz condition with respect to (x, y) in

the interior of & 5 ,

(4) and in the interior of 2, we have

Lim 1

h —po _ﬁ {V(x + hf(t,x,y),v + hg (t,x,y) - V{x,y) E =6 >0
where € is arbitrarily small but a fixed positive number when x and y are

bounded.

Then for any solution of (14), x = x(t) and y = y(t), and /3 being arbitrary

positive numbers, if we have l x(tgy) ' & ol s , y(to)l & A at an arbitrary t = to ,

then there exist two positive numbers L1 and M1, depending only on & and 3.

such that !x(t)l<L.1 and |y(t)| £ My fort > t, "

Lemma 2

"Under the same assumptions as in Lemma 1, let E be the domain |x|< Ay, |¥]| <& Bj
for the arbitrary constants satisfying Ay » A} and ?, > B1. Then for any solution(x, y)
such that (x(to) , y (to)) € E - U at t = to, we have (x(t), y(t)) € U for some

t > to."
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These lemmas then led Yoshizawa to the following theorems.

Theorem 6 [5_]
"Let the hypotheses of Lemma 1 be satisfied. Then all the solutions of (14) are

ultimately bounded. (This means that there exist positive constants A3 and B3 such
that lx(t)f < A3, \y(t)‘ < B3 for any solution of (14) as long as (x(to ),Y(ta))

€Ey, at t = t, , and for some T , where t > T, .)"

Theorem 7 [ 5]
"Suppose that the same conditions as those in Lemma 1 and the conditions for the
uniqueness of solutions in Cauchy's Problem are valid. Moreover suppose that

f(t +w, %, y)

f(t, x, y)

and

gt +w, x, y) g(t, x, y)

for a positive constant w. Then, (14) has at least one periodic solution of period w."

Example 5

Consider the system defined by

where g(x) is continuous and g(x) sgn x ——3» o0 as X | ———» 00.
It can be shown that if F(y) is continuous and F(y) sgn y ——» 00 as Y ——— o0,
and p(t) is continuous and bounded, then all solutions satisfy ultimately
|x(e)] <& , |y(®)] < B,y =x,
where A and B ore independent of the particular solution chosen.
In applying the methods presented in [5] to this example, we let

x =y

y = -F(y) -8(x) + p(t).
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The resultant V-function for this system can then be chosen to be as follows, where a and b

are sufficiently large positive constants:

exp [Lu’) , (-oo< x<00; y=b)
exp [u-y + b] » (x > a; |y|4£ b)
V(x, y) = exp [u + 2b] , (x 2 a, y & =Db)
exp [u+g§ (x+a)-2b],( X 2 a,|ly| < -b)
a
exp Lu - 2b’] s (x 2-a,y &€ -b)
exp [u+y -b7] , (x £ -a,|y| £ b)

where w = U(x, y)

- y2/2 “fx g(x) dx.
(o]

In reference [_6] , Yoshizawa provides sufficient conditions for every solution of

x = £(t, x, y)

y = g(t, x, y)

to converge to a periodic solution as t ——» o0, provided the solutions are ultimately
bounded:

In reference [7] , Yoshizawa discusses the stability of solutions of a system of
differential equations using his V-functions as Liapunov functions. The results of
this work coincide with results stated explicitly in other sections of this report.

In reference [8] » Yoshizawa discusses the solutions of the second order boundary-
value problems. Yoshizawa summarizes the work done on this problem with reference to
the existence and uniqueness of solutions.

Also, in [8] , Yoshizawa considers

x = F (t, x). (15)
The next three theorems give conditions which guarantee the ultimate bounded-

ness of the solutions of (15).

Theorem 8 [8]

"(H) If (i) D* is the domain: 0 < t, || x| > R, , where Ry is sufficiently

large,
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' ' »
(1i) ¢there wxiétds A Cohtuv\wams.'.V(t,‘x_) Q'.n) .D.)

(iii) for any positive number R > Ry, there exists a positive constant G(R)

such that V(t, x) = G(R) > 0 for }x| = R,

) (iv) Vv (t, X) —p o0, uniformly, for /) x /| ~—— 00,
(v) V(t, x) satisfies the local Lipshitz condition in x ,
(vi) in the interior of D*, V is absolutely uniformly continuous and we have

| Lim 1
} h —» o h{V(t + h, x + h F(t,x)) -V(t,g)}

2 0, almost everywhere,
(C) then given an arbitrary positive number o » we can find a positive number 4>« ,
 such that for any solution of (15) satisfying || x(to) || & X at an arbitrary ty > O,

we have for t » t4

1

Izl <A

Theorem 9 [ 8—_]
"(H) If (i) the conclusion of theorem 8 is true,

(ii) there exists a function V(t, x) defined in domain D* ,

(iii) Vv is positive and continuous in D¥* ,

(iv) for any K > Ry, > 0, we have || x Il £ K, then V(t, Xx) —— O uniformly

as t —%» oo ,
(v) V is locally lipshitzian,
(vi) in the interior of D*, V is absolutely, uniformly continuous and we have

Lim 1

h —0 E{V(t+h,§+ h F) -V(t,_}g)} > o0
almost everywhere,
(C) then for any solution of (15) for which x(t 4) = x5 and ||xgl] < ¥ , we have, at

some value t, say T > to , || X(T) | &£ Ro, where t is arbitrary.
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Theorem 10 [8]
(H) If (i) the assumptions of theorems 8 and 9 are valid

(C) then there exists a positive constant B (independent of to and xo) such that any

solution of (15) satisfies ultimately
l=®n < 5.7
In (_8], Yoshizawa has examples of the above theorems and he also gives a further
extension of theorem 10.
In reference [9] , Yoshizawa considers a theorem which gives the necessary and

sufficient conditions for the solutions of (15) to be bounded.

Theorem 11 E9__\
In order that every solution of (15) be bounded it is necessary and sufficient
that there exists a function V(t, x) satisfying the following conditions in A:
L v, x > 0,
(2) V(t, X) ———» oo uniformly in t, when | X |} —— 00,
(3) for any solution of (15), the function V(t, x) is a non-increasing function of t .
And for the condition of equi-boundedness, we further require:
(4) there exist ¢ > O such that
V(to, x) .(K) provided x £ K.
the next twelve theorems, from [9], summarize the boundedness results for

equation (15).

Theorem 12 [9]
(H) If (i) F is periodic in t,
(ii) solutions issuing from t = 0 are equi-bounded,
(iii) solutions issuing from t 7> O are simply bounded,

(C) then, all solutions are uniformly bounded .
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'Notation

) *n
(1)  V(t, x) defined in A means that V is continuous over o < t « oo, Hx) > Rg.
(2) "pg V” = Lim 1

h—»o0 h {V(t +h,x+ h BV (e, 03
(3) V(t, x) has "property A" when there exists a ‘K= <"’((K) such that
V(t, x) € & (K) when || x| & K
%) D V has "property B'" when there is a A such that Dy V 2 - (K) & 0, provided

lix1l] £ K

Theorem 13 [9-]
(H) If (i) V(t, x) is defined in A,
(i) V. ——>» 00 as || x {| —>» 00,
(iii) V has property A, |

(iv) in the interior of A, we have D,V & O,

F
<) then the solutions of (15) are equi-bounded."”

Theorem 14 E 9]

"(H) If (i) V(t, x) defined in A*,
(ii) V ——» @0 uniformly as || x || —» 00,
(iii) V has property A,
(iv) in the interior of A*,

we have DF V X o,

(C) then the solutions of (15) are uniformly bounded."

Theorem 15 [9]

"(H) If (i) V is defined in g,
(ii) V ——» 0o uniformly as | x|} ——» 00,
(iii) V has property A,

(iv) DF V has property B,
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(C) then the solutions of (15) are uniformly ultimately bounded."

Corollary

"(H) If (i) solutions of (15) are uniformly bounded,
(1ii) V is defined in b.* and has property B,

(iii) DF V has property B,

(C) then the solutions are uniformly ultimately bounded."

Theorem 16 [9]
"(H) If (i) V ——» 0o uniformly as || x|| ~——p 00,
(ii) Dy V has property B,
(iii) there exists some R > Ry and ¥ such that V & ¢ for

(C) then, the solutions of (15) are equi-ultimately bounded."

Theorem 17, [9]
"(H) If (i) solutions of (15) are uniformly bounded,
*
(ii) V is defined in A and has property A,
* *
(iii) there exist V (t, x) > O in A,
(iv) - V" has property B,

(v) Lim tDFV + V*] = 0 uniformly in any domain
t —p 00

(C) then, the solutions of (15) are uniformly ultimately bounded."

Theorem 18 {9]
*
"(H) If (i) V defined in A ,
(ii) Vv —~—» 00 uniformly as |[|x || ———3 00,
(11i) there exists R and ¥ such that V & 4 when x|l =
* *
(iv) V. > O and defined in b ,
* *
(v) -V has property B and Lim Y_ DpV + V ] =

t —% 00
any domain R £ |lx}| € K,

(Y]

]
-]

R,

O uniformly in
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(vi) solutions of (15) are bounded,

(C) then they are ultimately bounded."

Note
We can replace bounded in (vi) by equi-bounded, then the solutions are equi-

ultimately bounded.

Theorem 19 [9]
"(H) 1If, (1) the system in (15) is of first order,
(ii) solutions are ultimately bounded,

(C) then the solutions of (15) are equi-ultimately bounded."

Theorem 20 [9]
"(H) If (i) (15) is linear,
(ii) solutions are ultimately bounded,

(C) then the solutions are equi-ultimately bounded and equi-asymptotically stable."

Theorem 21 [9]
"(H) If (i) F is periodic,
(i1) solutions are ultimately bounded,

(C) then the solutions are equi-ultimately bounded and equi-asymptotically stable."

Theorem 21 9

"(H) If (i) F is periodic,
(ii) unique solutions of (15) exist for the initial value problems,
(iii) there exists a ¥ > O such that if ||x,|| & B, || x(t; X5, O) I & K-
(iv) solutions are ultimately bounded, for the bound B,

(C) then the solutions of (15) are uniformly ultimately bounded."
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Theorem 22 [9]
"(H) If (i) F is bounded when || x|| is bounded,
(ii) there exists V = 0 in b,
(1ii) V ——p oo uniformly as || X || ~———%= 00,
(iv) DFV < 0,
(v) R is sufficiently large, then D gV has property B for ||x]] & R,

(C) then the solutions of (15) are ultimately bounded."

Theorem 23, E9]

"(H) If (i) F is periodic in t
(ii) solutions issuing from t = O are equi-bounded and the solutions are
ultimately bounded,

*
(1ii) R, is sufficiently large in A,

(C) then there exists a positive V(t, x) defined in p*which is continuous and its
first partials are continuous. V ——— 00 uniformly as || x}| =3 00 and V has

property A. Also,

V- @wy E
ot

has property B."

In reference [10] , Yoshizawa discusses the boundedness of solutions under
perturbations. He considers the unperturbed system to be given by (15) and the
perturbed system to be

x = ¢ 0 + H(, D,
the concept of total boundedness arises in the following theorems; and it is

related to other types of boundedness by these theorems.

(16)
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Tﬁeorem 24 [ld]
"(H) If (i) the solutions of ¥ = A(t) x are totally bounded,
(C) then the solutions are uniformly ultimately bounded. In fact, )Ig(t)]]———a-o

as t ——ypo00.

Theorem 25  [10]
"(H) If (i) R > O, constant, and sufficiently large,

(ii) A* 1is defined by,

o opF 0 £ e < 0o Nzl oy, B

| (iii) V is a positive continuous function in[§,

(iv) V has property A and V ———3 00 uniformly as | x “_____sp-oo,
(v) V is locally lipshitzidn in x,

(vi) Dy ¢ has property B,

(C) then the solutions of (15) are totally bounded."

Theorem 26 {10]

") If (i)

I

in (15) belong:
(ii) F 1is periodic in t,
(1ii) solutions issuing from t = O are equibounded and if the solutions

are ultimately bounded,

(C) then they are totally bounded."

Definition
For a given positive function f( || x I| ), the solutions of (15) are said to be

ultimately bounded under constantly acting perturbations of order f( Vj;ﬂ ) if there

exist two positive constants o and/3 such that
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” H (t, _}_:)” <X £ (x| ) for || x|] 2 B; and then we have

lim Nz (5 %, )l < B,
t —%» 00

where x is any solution of (16).

Theorem 27 | 10

*
"(H) If (i) V is positive and continuous in A,

(ii) V has property A and V — 0o uniformly as || x || — 00,
(iii) V(t,x) -V (, x1) < K \/m

where x and x; are sufficiently close such that K is only a function of || x || s
(iv) DF V=-G(\lx\| ), where G is a positive continuous function for

(v) KX (L xll) =0 (N xll Nas || x| ——> o0,
(C) then the solutions of (15) are ultimately bounded under constantly acting
perturbations of order £ (| x| )."
In references Y_ll, 12, 115,- Yoshizawa discusses the boundedness properties
of _;g = F(t, x) in more detail.
In reference [14], Yoshizawa considers the following second order system:

x = F (t, x, §) .

The following theorem gives sufficient conditions for bounded solutions of (17).

Theorem 28 | 14

"(H) If (i) two functions w (t) and w (t) are defined on o & t < 00 and

belong to Cz,

(1i) w and w are bounded along with their derivatives,

(iii) w € w, for all t
<F (t, w, ;), for all t

w 2 F (t, w, w), for all t

17)
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‘ ‘ (iv) D is the domain where o < t < 00 and w(t) € x < w (t),
| (v) domain Dj is defined by (t, x) € D and y » k, if domain Dy is defined
\ by (t, x) € D and y£ - k, where k is a sufficiently large positive
number and y = X,
(vi) there exists two positive continuous functions Vi(t, x, y) in D; and
Vi (t, %, y) in Dj,
(vii) v, A < a(|y\| ), where "a" is a positive continuous function,

!
(viii) Vy, V) ——> 00 uniformly as \yl — 00,

(ix) Vy, V, satisfy the following in the interior of D; and D,:
1 2 =4 1 2

! L
| Vi = lm , 1 {vlu +H, x +hy, y + h F)- V(t, x, yﬂj
! h — o h
2 o,
L4 —
Vv, = lim + l{V (t+h, x+hy, y+h F)-V2 (t, x, y)} <0
h —» o h

(C) then the equation (17) has a bounded solution". Yoshizawa uses theorem 28 to prove

the existence of periodic solutions for a wide class of equationms.

Differential Inequalities

One way to look at the direct method of Liapunov is the following:

"it depends basically on the fact that a function satisfying the inequality

m(t) € w (t, m(t)), m (o) = 1o,

. is majorized by the maximal solution of the equation

T = w @, x) , r(tg) = xo."

this comparison principle enables one to study various problems of differential
equations. Because of this fact we make an excursion into the area of differential
inequalities.

The topics which can be studied through the use of differential inequalities are

upper and lower bounds for solutions of differential equations, the unboundedness of
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solutions, asymptotic behavior of solutions, existence of oscillatory solutions, and many

other topics.
The following inequality, known as Gronwall's inequality, is one of the simpler

and more useful ones.

Theorem 1
"Let 0 < g(t) on [_a, b\ and let c and m be positive constants, then if
g(t) € c + m ftg(s) ds on [a, b],
then a
g(t) £ ¢ exp [mt] M
this result can be easily generalized to the following case:
"if u(t) and v(t) are non-negative continuous functions on |a, b:\, ¢ > o, and

t

vit) € ¢ +f v(s) (s) ds, a, bj,
). . L= 2]

t
then v(t) £ ¢ exp‘\f u(s) ds:\ ; and if ¢ = 0, then v(t) = O for ta, bJ."
a

In reference 23 , Conlan's generalization of the above theorem is for the case
where v(x) is a vector-valued function, v(x) = v (x1, ..., Xp).
As an example of the application of Gronwall's inequality, we consider a

theorem from Bellman's book, ElS].

Theorem 2 Y_l 5:)

"All the solutions of u + (1 + x(t))u = 0 are bounded provided that

00 -
f l X(t)| dt < o0,

X ———p O as t — 3 00.

¢9)

(2)
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'

Proof

Multiply T+ Qo+ x(t)) u = O by u and integrate by parts to obtain

t

(1 + =x(t)) -lf x (t1) u? dte] = c2,
290

@2 + u?

2 2

We can now take to sufficiently large so that
1 + x(t) > 1/2 for t> to

thus, we have

t
u2$ 4|cz| + 2f |;{(t1)‘ u? dtq
)

t

cy +2£ l;c (tl)\u2 dtl'

By Gronwall's inequality, we have

o0

u2 < Cq expi_Z f \;{ (ti)\ dtl

Jto

Another example of this technique is also a theorem which comes from '\:15].

Theorem 3 [1 5]

"If U+ a(t) u = 0 and

0
f t 'a(t)’ dt < o0, then Lim U exists."
t —»00

Proof

Integrating o+ a(t) u = O twice between the limits | and t gives

t

u=c1+c2t-f (t-tl)a(tl)u(tl)dt|.
1
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For t > 1, we have

lyl
g
t

t
Slal + el f 1 fae)| bl e
1

1
By Gronwall's inequality we obtain
t
%’- < (ler] + |c2|) exp tl\a(tl)\ dt] £ cj3.
o

Since

t
|3l = e f a(t1) u(ey) aeq),
1

then from |u | £t C3 we have

t
|al & lep| + ¢3f ty |a(ty) | dey,
1

t
Thus since £ Ia(tl)l dt converges, lim U exists.
t — 00
1

Another linear, time-varying, second order system for which the application of
Gronwall's inequality is very important is given in theorem 4. (We state the theorem

but do not give the proof.)

Theorem 4 Y_l 5]

b
"If all the solutions of U + a(t) u = 0 satisfyf u? dt < o00, then all the
a
. by
solutions of u + [a(t) + b(t)] u = 0 also satisfy u” dt <« oo provided
a

|b(t)) < e, t 3y 0.

Gronwall's inequality and its generalization, can be applied to nth order systems
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as well as second order systems. In some cases, it may be more convenient to use a
different norm than the Euclideon norm. Even though this may be the case in what
follows, we will not discuss the differences between norms; but will assume that all

the norms are equivalent for the operations performed.

Theorem 5 [15]
"If all solutions of i = A y, where A is a constant matrix, are bounded as

t ——» 00, then the same is true of the solutions of

2z -[a+20)] 2

00
f NBY dt < oo."

provided that

Proof
Rewrite tﬁe equationé = A z + B(t) z
as +
z = y +f ¥ (t - ty) B(typ) z(ty) dty

o
where y is the -solution of y = A y satisfying y(0O) = 2z(0), and Y is the matrix
solution ofi = A Y, Y(0) = I.
Now, let C = max (sup Hy | , sup l Y| ) then

t 2o t> o

' t
Nzl <l +f WX & -epllsfl BNz @l ary
0 ,

t

cavaf Nl o
[o)



- 28 -

By Gronwall's inequality we have

t
hzn < c exp[clf DR dt1]
o
QO
= ¢; exp 101‘/‘ it B || dtl—X
o
Q0
Thus, since.]~ | Bl dt is bounded, | 2 is bounded.
o
Theorem 6 [}5}
"If all the solutions of i = A y approach zero as t ———» 00, then all
solutions of 2 = (A + B(t)) Z approach zero as t — 00 provided that
llg(t)" < ¢ fort > ty, where c] is a constant depending on A."

The proof of this theorem also is dependent upon Gronwall's inequality.

In reference [15:] , Bellman gives several other theorems dealing with the system
z2 = @A + B(v)) =

The proofs of these theorems depends upon the application of Gronwall's inequality.

OTHER EXAMPLES OF THE APPLICATION OF DIFFERENTTAL INEQUALITIES

The following discussion will be a brief outline of the contributions of many
authors to the fields of differential inequalities and differential equations.

In reference [_32-], Viswanatham generalizes Gronwall's inequality. We present
this work in theorem-form.

Theorem 7 132__]
X

"IE ¢ (x) < 1) +f £(s, p(s)) ds
X

0
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.where f (x, y) is continuous and monotonic increasing in y in the region
R defined by ’x - xo] < a, {y-n \ < b, where a and b are positive real numbers,
and ¢(x) is continuous in |x - x,| &« a, then 4)(x)$ H (x), where }K (x) is the

maximal solution of :2= f(x,2 ) through the point (x5, n) for x > X%o."

Theorem 8 [_32]
"Assume that the conditions on f(x,2) in theorem 7 are valid and assume that

X

b 2N +f £ (s, Pls)) ds ,

X0
then ¢(x) Z }ﬂ(x), where W(x) is the minimal solution of the differential equation

2= f (x,2) through (x5, n) for xo < x < x. + a."

—_— ~ 0

Corollary 1

"Under the conditions on f(x, y) in theorem 7,

X

1f dw ¢ P +f £(s, P (s)) ds

then @(x) < y/ (x) +H(x) for x » xo, where M (x) is the maximal solution of

L J
2= f x, 2+ W (%)) through (x5 , O) and as far as the maximal solution exists."

Corollary 2 gives a similar result corresponding to theorem 8.

Gronwall's inequality follows from theorem 7 if f(x, y) = lf(x), ¥, X = 0.

If £(x, y) =n7(x) g(y), where U (x) is non-negative and g(y))is monotonic increasing
in y, then we get the inequality mentioned earlier in the text.

The theorems 7 and 8 are useful in providing estimates on the closeness of approxi-
mate solutions to the actual solution, and providing bounds or the norms of solutions
of differential equations. Applications of these theorems are provided by Bihari L16] R

Langenhop [28_] » and Coddington and Levinson [22] .
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In reference [2il, Choy-Tak Taam derives some criteria for the boundedness of
the solutions of certain nonlinear differential equations using Gronwall's inequality.

The system he considers is given by

o (r(x)v') n 21-1
ol x + Z; py(x) vy = 0.
i=1
In reference [Zi}, Choy-Tak Taam derives sufficient conditions for the solutions

of the equation

Afr ) "
XDy gy = £ )

to be bounded, where f(x, y) is a "small" nonlinear term. He assumes Lebesgue
functions and that f(x, y) is lipshitzidn in y.
In reference [25}, Kolodner derives expressions for the upper and lower bounds

for the upper and lower bounds for the solutions of the Ricatti equation:

. 2 2

x + x = f(b).
Kolodner makes use of differential inequalities in his proofs.

In reference Y3ﬂ , U4z states and proves five theorems concerning the boundedness

of nonlinear, second order differential equations of the type '+ f(x, %) + g(x) = 0.
His theorems are generalizations of the following statement:
"if d > Oande » O are real constants, then a solution x(t) # O of the linear
equation'i + d% + ex = O is oscillatory or monotonically approaches zero."

In reference {24}, Hochstadt extends the following theorem of Liapunov.

Theorem 9 [24]
"Let p(t)'# O be nonnegative, piecewise continuous, periodic function of period T.

Then all solutions of

[ X ]
y + p(t) y = 0
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T
T f p(t) dt £ 4."

o

are bounded for all + 1f

Hochstadt's theorem is:

Theorem 10 [24:\
"Let p(t) Z O be nonnegative, integrable, periodic function of period T and A

be the smallest eigenvalue of the boundary - value problem

Y+ Apt) y = o0
y (0) + y(I) = 0
y (0 + 3(T) = o.

T
If Tf p(t) dt £ 4, then N> 1."
o]

In reference [33], Waltman establishes a criterion for the oscillation of all
solutions of
Y + a(®) £ = o
He gives three theorems dealing with this problem, where the following conditions are
placed on £(y):
(1) £(0) = 0; £(y) #0,y# 0

(2) df continuous and nonnegative.
dy

In reference l:30], Trench considers the behavior of the solutions of the differential

equation
%+ [f(t) + g(®)] uw = o
as t ———p ©00. He assumed that the solutions ofli. = f(t) 2 are known.
In reference [26], Lakshiborth, applies Gronwall's inequality to derive criteria

for the boundedness and unboundedness of solutions of
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dy = £(x, y).
dx

In some of his proofs, he uses Liapunov-like functions.
Finally, in reference [Zf], Lakshmikantham provides bounds on the norms of the
solutions of
é = £ (t, ¥, 2(tg) = %o, to > O.
He uses a '"test function" in his theorems and proofs which is strongly related to a
Liapunov function. Also, he studies the system
X = A(t) x + E(t, 0 £(t, ®

with regards to stability and asymptotic stability.
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STABILITY OF NONAUTONOMOUS SYSTEMS
. SUMMARY

.~ In this section we consider some of the problems which occur in the stability

Iianaiysis of nonautonomous systems. Most of the work which is discussed here deals

with linear systems, although there is some discussion concerning nonlinear systems.

This section is divided into four parts; theorems on continuability and boundedness,

theorems on the stability of linear, nonautonomous systems, theorems on the stability
' of nonlinear, nonautonomous systems, and methods of constructing Liapunov functions.

'In this section there is no compendium of examples, as such; the examples are given
throﬁghout the text to aid in the discussion of the material. However, it should
be‘ggggg that there are a few other nonautonomous systems scattered throughout the

rest of the report. Also, because of the "Method of Construction" of this report,

there are examples of time ~ varying systems in the miscellaneous section.

(I) THEQREMS

x =-£ (x, t), (1)
where
x@© =x, 0¢g t <o, ’ (2)
and f is continuous for all o ¢t ¢o0and [[x) < oo.

We shall use two norms, denoted as follows:

2] = x| + x| +.. .+ /xn l ,
and
Izl = (kp + xp b ...+ xnz)l/z.

Let V (%, t) be a scalar function defined for 0 & t < ©0 and for all x with
the following properties:
(1) V is continuous in x and 1 ;

(1i) V has one - sided derivatives with respect to X and t H
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(iii) 'l.i‘.m V (x, t) = oo for all t; and |x] < oo ;
X |-» o0

(iv) V is positive definite.

Let \'I, defined as

V=3V , @ @0

3t
be bounded (whenever it is necessary) as follows:
OV (x, )€ W, V(x, t), (3)
Vi )2 O (8, V (x 1), ()

where © and W are continuous for
o £t < oo, |_:_(\ < 00, and W(t, o) = O (t, o) = o.
The following theorems, 1 and 2, are concerned with the continuity of the
solutions of the initial - value problem in (1) and (2) as t becomes large.
Lemma 1 (By Conti) [1]
"Let x(t) be a solﬁt_ion of (1). Define m(t) by the following:
m(t) =V (t, x (t)) , ro = m(o) = V(o, Xa).
Let (3) be satisfied by V, and let r(t) be the maximum solution of the equation
r = w(t, o), r(.O) =1, (5)
Then ¥%(t) can be continued to the right(as a function of t) as far as r(t) exists,

and for all t for which m(t) < r(t)".

Lemma 2 [1]
"Let x(t) be a solution of (1) and let m(t) = V(t, x(t)), ro = m(0).
Let (4) be satisfied and let e(t) be the minimum solution of the equation
r=0(, r), r(0) = ro , (6)
Then m(t) > @(t) as far to the right as both e(t) and x(t) exists."

The above lemmas are used to verify the following theorems.




Theorem 1 Elj
"Let x(t) be a solution of (1), defimed for all 0 £ t < to. Then either

|§(t) I > OC 88 t ———» to or x(t) can be continued beyond to."

Theorem 2 Ll]
"Let (3) be satisfied and suppose all solutions of r = W (t, r) can be
contimued for all t. Then all soluti@ng of (1) can be gontinued for all t."
We now list some corcllaries cof the~ab§-;}*e theorems which deal with the

problem ~f bourdedrness.

Corollary 1 [1:]

"If all the solutions of r =w(t, r) are bounded, then all the selutions

of (1) are bounded."

Corollary 2 [1J

"If all solutions of r =w(t, r) approach zero as t ——» 00, then all the

golutiona of (1) annroach zero as t — o00."

Corollary 3 [1] |
"If the Lim'§_| = 00 and (4) is satisfied, and if all the solutions of

. ¥V — 0o
r =9(t,r) approach infinity, thenm all the solutions of (1) apprcach infinity."

The next two theorems give relationships between the 'test fumctions",

V(t, x), and the solutioms, x.



Theorem 3 [1]
"Let W and © be monotonic nondecreasing in r for all t and suppose that (3)
and (4) are satisfied. Let all solutions of r =wW(t, r) and r = ©(t, r) tend to
finite limits as t — 00. Denote V(0, ¥,) as ro. Let r(t) be the maximum solution
of (5) and C(t) be the minimum solution of (6). Then 1f X is a solution of (1),
V(t, 3(t)) tends toward a finite value as t —» 00 for all X; and Lim e(t) <«
lim V (t, x(t)) £ 1im r(t)." Fee
t—» 00 t —» 00 .
Notice that 1f W(t, r) < O, then V is negative semidefinite and V approaches
a limit as t—=00; but V approaching a limit does not imply that X approaches a
limit. Brauer in reference [l] gives a counter example to support this statement.
The example is as follows:
x1 =x2,:':2 =-x,

where

Xy =acost+ bsint

Xq -~-asint + bcos t ;

ifve= EpX then V = a2 + b2 for all t. Therefore, V approaches a limit as

t -~ 00, but x is periodic and does not approach a limit. The following theorem

gives sufficient conditions to guarantee a finite limit for the solutions of (1).

Theorem 4 [1]

"Let (3) be satisfied and let w be monotonic nondecreasing in r for each
fixed t. Suppose all solutions of r= W(t, r) tend to finite limits as t —» o0
and

t t
vV (t, f £ (s, x (s8))ds) < J V (s, x (s))ds. )]
a a

Then all solutions of (1) tend to finite limits as t —» o00."
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Next, we outline some of the results of Rosen, [2]. He obtains a bound for the
solutions of (1) and (2), under the following conditions imposed on £ (x, t), by
linearizing £ (x, t) and then applying the mean value theorem. We assume that £
has continuous second partial derivatives. Thus, the mean value theorem yields.
£ t) = £ @t + B (Y, x0) x,

where 0 < Xi < 1 and B (X;_ X, t) is the Jacobian matrix{afi(Xig,_ t) .
Q x4

Therefore, equation (1) becomes

-B (Y x,t) -£(a t). (8)

L]
X

Lemma 3 [2]
"Let Uy = Xiﬂ’ 0 < b,i = 1 and let £ (u, t) be such that the matrix

BUyys B+ B, @y, B)

is positive semidefinite for o =« t < T. Suppose

T
Iple o + ) Jeeo]e.
Then there exists a unique continuous solution x(t+) of (1) such that
T
l=)l < Jlx || + f | £ (e, &) dc.m
LI =i J i i
o

The hypotheses of Lemma 3 can be weakened so that the existence of a solution

depends on the minimum eigenvalue of B + B Hence B + Br need not be positive

_
semidefinite. We denote this minimum eigenvalue, over the finite interval
o € t £ T, by Z.A.(C), where @ = ||g|| .

In general, the matrix B cannot be determined since the J i are unknown. Hence,

Rosen, [2], considers the evaluation of A( 6) a problem in non-linear programming;
and in an appendix of his paper, he shows how the problem can be formulated as a
minimization of the variable )\ in a space of @an + Y+ 1) dimensions, where 7’

is the number of pargmeters.
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In theorem 5, an upper bound for ”_:5 [/ is given for the interval o £ t
The bounding function is defined in the following way:
t
- At -A(t -T)
pN e xe + £t e dr > o
)

and

e e (A, £) >0

- We now consider the equation
ASeoal = h= o
If the function A {e @) )} is bounded and nondecreasing, hence there

exists a maximum root A\, £ Z\(0), provided there is at least one ) such that

N 24 fe 00} ¢A.

Theorem 5 [2]

"Assume that there exists a root >\m for (9). Then there exists a unique,

continuous solution x of (1) for which

"35" ée(xm’ t) , o £t £T."

Example [2]

Consider the first order system

. X ,0<xo<l.
x =951 - x

Then f(x, t) = f(x) = 1—11-:-; , where B = -1 .  Hence, the minimum
1 - x)2
eigenvalue of 1/2 E_B_ + gT}is A(e) = -1 ( .) The function €(>‘ » t)
a -@)2
becomes

IN

(9)



6().:)-xoe. .C(A)-xoe .

Equation (9) becomes

1 —— )\ = 0.
;_1-xoe_ ;

If % = L1 endT = 1/2, then Ap* - 1.709 and |[X]| € e(Ap £) = x, e_'“i
10
0.26. From the exact solution and for x, = _1 and T = 1/2; we have ”5” £ 0.18.

10
Thus, e (Am» t) gives an upper bound.

From theorem 5, we can conclude the following about the asymptotic behavior of

the solutions of (1) as t —» 00: "if ”_f_ @ t)” 1s bounded and )\, > O for

0 €t <TasT-—> oo, then |[x| is bounded as t —» ©0."

Corollary 4 [2]
"Let ”_g @ t)” be bounded for t 2> O and letA(e) and //i// max, be

defined for T = ao. If )‘m > 0 is the maximum root of the equation

ALl 3 Neha] =2 0.

then there exists a unique, continuous solution of (1) and

N o -)\m{: ot W A-)\m(t -’t’l .
12l < [%] € + j (£ @) C it €
o}

4

-1
€ l]xou +)\m “g“ max., for T > 0.

Example [2]
Consider the second order example given by:
. -1 -t
X] = - XX, cos wt — 2x)(1+1 x;) + £
2 8
= - fl (Xl’ Xz’t) )
. 2 3/2
X0 = - (2 ~X1 cos wt) X9 = (1 + x5) + 1

- f2 (xl,XZ,t) o



The matrix B 1s defined as:

B = ,a=31x2cos¢+2(1 +_1_X1x1)
c d 2

b = Xlxl cos ¢

c = —X2X2c052¢

a b -2

[=N
B

$=wt.

The value for A[e:l for any fixed e is given by

2ALp] = min [a+d- /(a-d)z + (b+_~c)2:|

Ol—‘X|JX2_él
0sgde2m

Thus, for p2 £ 1 A Lel >2 a -p). Also, £1(0, 0, t)

'

and f5 (0, O, t) = 0. Therefore, ”_f_ ©, t) ” = "é‘ e“t and "’g'”max

Hence, = + -1 £ implies that the maximum root of 2 { 1 -
d %o A max

is 1/2, 1In conclusion, the bound for "_}_c_” for t 2 0 |1is

- t/2 t -T -1/2 (¢t -T)
”x” £ 12 &€ + 1/8 e dn
(o]

-t/2 -t/2
£ 2 (1- € c < 3/4.

As t —+ o0, "_}_;” ——» 0.

2—X2x1c052¢ + 3 /1 + szz
2

_e/s

1

2

8

In the special case when (1) is linear, Corollary 5 gives better results than

Theorem 5.

___)-A



Corollary 5 [¥]

“Let x (t) satisfy x = - B (t) x + £ (), x (0) = x, . Let ) (t) be the

minimum eigenvalue of 1/2 [_B_ + -B-T] . Then

t
“_:_c_” < "3&,” exp ,:- \[o )\("L”) dv + f
74

t
- j)(c') dr] dr.
T

Consider the constant coefficient, second order system given by:

Example [:]

L 4
X
o

y

y
2

- &£ x —2&vy.

For € > 0, this system 1s asymptotically stable.

But, the solution can be made arbitrarily large at a finite time.

the system is

where

I=| =/t2 ¥ (1L-en?

For any M > 0, let € = 1/Me ; therefore for t

bound given by Corollary 5 is:

=l = /4% + a-en?

-et @ -e)

e <e

2

, o] o]

The solution of
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Example [2]

Consider the second order, linear, time-varying system given by:

) 2t
x ==2x +& y,

y = et x — 2y ,
where x(0) = 1 and y(0) =1 + /-2_. The solution is given by:

(V2 -1t

x(t) = e ’

(vz -3)t
) = (1 +V2)ye .

Thus, the actual value of || x| 1is

2 -4%
”3!_” = 1 + (1 + J2) & exp [(ﬁ—-l) t_-|
Therefore the solution grows exponentially. The upper bound given by Corollary 5,

where the eigenvalues of B are 1 and 3, is

Iliué/1+<1+ﬁ>2 . exp{gatzx_z_s __th

With these examples, we conclude the boundedness part of this section and we

now look at the stability problem of nonautonomous systems.

(II) THEOREMS ON THE STABILITY OF LINEAR,

NONAUTONOMOUS S YSTEMS

Consider the lipear system

IR

= A (t) x. (10)
It is well known that if A were a constant matrix, the system would be

asymptotically stable if every eigenvalue of A had a negative real part.

In [5], Zubov shows that the above statement is not, in general, valid for
nonautonomous systems. Yet one might expect that the above criterion would

apply to system (10) if the elements of A(t) varied "slowly enough'.
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That this 1s the case has been shown by Rosenmbrock, [3] .

Theorem 6 (3]
“Let every element aijOf A(t) in (10) be differentiable. Suppose that
‘aij' <a < oo and suppose that every eigenvalue A\ of A satisfies
Re (A\) € — € < 0.
Then there exists some S > 0 which is independent of €& such that if ,éLJ ,‘S
for all i, j, then the solution x = 0 of (10) is asymptotically stablg."
The problem still remains of finding the bound on thela;_d-l. Rosenbrock

developed a method for the special case in which A(t) takes the form

o [1]lolol... To
0 ]o] 1] 0 ]... Jo
At) = A R A R P R I (11)

0 0 o 0 . L] - 1
-al -8.2 "83 -84 o e e -an

where the aj are time varying functions. If A is of the form in (11), system (10)

reduces to the n-th order equation:
n -1
L) N x(n ) +

[J
.’
Y
[N
»
L]
(o)

! - e mamm adesace 4o
The results of Rosenbrock's work are given in

-Theorem 7 (3}

\}

YLet A(t) be given by (11) and let the hypothesis of Theorem 6 be satisfied.
Further, let I>‘i— )Jl > ©@ > 0 for alli, j, i # j. Let lai] < a

for all i. Then the point x = 0 is asymptotically stable if the matrix L(t)

is negative definite for all t > to and for some "’l ? 0, where

L=§A+AS—§.:_+‘V(L, (12)

Zn i—-1 __ j-1 ”
(Si.‘ )y = (¢ (13)
J (K=1 >\ K >\ K >

and
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Example (3}

Consider the system '

<o
+
9
"
»
+
N
Ne

Y'—K<t)x’
or
X + (2 + K %+ (K + K x = 0. (14)

The eigenvalues of (14) are given by

A]_,Az ’=—(2+K)_'|'_' J4+K2—'4_1.(

2
To insure that these are real and satisfy ! >\1 - >\2 l > © >0, we require
that ,K l < |. Then the matrix L is given by
2
2 + K 2k - (2 + K)
L = — 2 . +
2 3
2K — (2 + K) (2 + K) - 3K(2 + K)
. 0 3 .10 0
— K . -K +'r(1 . (15)
3 -2 -4(2 + K) v} -2

The eigenvalues of the first matrix on the night of (15) are given by:

2 3

2
/\-(2+K)(5+K+K)}\+K + 4 K = 0

and

3
m;.n>\i > K + 4 K « Simce. §=§T,
L (2 + K)(5 + K + K%)

min [bii— 2 ,bij]] X7 X € nmin MN(® xpx £x0 B x

i 1#]

£ max Ai@) Xp X
i

Hence, — z;:_,r

L _:g} may be estimated by
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- L x 2 ‘2(K3 + 4 K) (13 + 4 K) i -2 K
% — - e
(2 +K)(5+K+ K9

and a sufficient condition for asymptotit stability i8:

28 - 4m) _W+4n |K| —2[E|>/~&>o,
(2+K)(5 +K +K*)

Another criterion for the stability of a homogeneous system is given by

' Wazewski, [1].

Theorem 8 [1])
\
“i1f A(t) 18 real and continuous and if > (t) is the largest eigenvalue
of 1 (A + Ar), then the solution x = 0 of the system (10) is stable if
2

4

7]
f >\(t) dt < oo and asymptotically stable if / >\ (t) dt = - . oao0.

(e} o
In the proof we make use of a V-function of the form: V (x, t) = X, X

vV €2 >\(t) Xy X. From the inequality, V € 2 (t) V we obtain an upper

bound for "5” , namely:

3

[ )\ (s) ds
I J. 7
L v

From this inequality, the conclusion of Theorem 8 follows.

Nxll < llx_|
it i

| exp
=0

A

We now consider some of the stability results of Zubov, {4). 1In the

following three theorems we use the notation

r = “ x| for a fixed vector x ,
o= |zl

r (t, X5 , t5) = [[x(t)|] , where x is a solution of (10) for the initial

values x(t/a) = xo.
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Theorem 9 [4]

\\In order that every solution of (l0) satisfy the inequalities

1 -¥ t 2&_1-
fof%(tb)%z (t) exp[-% . ;51 dt| £ r (t, 2, , t5) £

o

t

% %
£r % (t )% (t) exp - 1 / ’}AZ dt
2 1
2 Vto ;&2
for t 2 tg, it is sufficient that there exist two quadratic forms V(x, t) and

W(x, t) satisfying the following:

(1) V is nonnegative and f‘l(c) r2 = V< /JZ(':) r ?
(2) W satisfies --)Ll(t:)r2 £ w £- yz(t) r 2;
(3) the functions fl(t) > 0, fgz(t) > 0,7%(:) 2 0,

}ZZ(t) =2 0 and 741 and ﬁ are integrable;
1 £2

4 w = av.”

dt

Corollary 6

"If the function

% %
%}_ (t) %2 (to) exp [ - 1/2 t{}ﬁg dt
ol 72

is bounded from above for all t 2> to > O, then the solution x = 0 of (10)

is stable."

Corollary 7

"If the function

7!1’% ) ;ff (t) e | - 1 f :

to

dt is

NN
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bounded and tends to zero as t —— 00, then the solution x = 0 of (10)

is asymptotically stable."

Theorem 10 (4]
"In order that every solution of (10) satisfy the inequalities

t

¥ %
P; % t%(to) 99(:) exp[ -pzlo {;?dﬂ < r(tox,t)S
% -% t
q T, * (t,) <\> () exp[- q, f {i} dt;\
ol P

fort > to , it is necessary and sufficient that there exist two quadratic

forms V(t, x) and W(t, x) satisfying the conditions:
(1) V is nonnegative and satisfies
aj ¢(t) r? £ VL ay ¢(t) r2; aj, a; > 0.
(2) W satisfies the conditions

2 2
-y ) £ WL — by P(t) v 5 by, by > O

(3) ;6 t) > o;;é(t) > 0 for t » 0; X is integrable;

7

(4) W = V. ¥

Corollary 8

"If the conditions of Theorem 10 are satisfied and }{(t) =}l(t) = 1, then

every solution of (10) satisfies

pl ro €xp Epz (t = to)] £ r(t’ .}_co’ to) =

£q) r, exp [-qz (t - t) J,

where pj and qi are appropriate constants."
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Corollary 9

"If all the coefficients of the system (10) are bounded in absolute value

for t > 0, then in order for the solution x = 0 of (10) to be asymptotically stable

and that every solution satisfy an estimate of the form
I'(t, 2‘_0’ tO) Sdlro exXp [' gl(t - to)] >
for t ) to, it is necessary and sufficient that there exist two quadratic forms

V and W satisfying

Theorem 11 [4])

"In order that every solution of (10) satisfy the inequalities

5 % t
To 751 (to)é (t) exp[-_l.f ____’)Ll}dt] € r(t, x5, tx) <

o P

5 %
<r, 75 (to)fé () exp [ 1 ft _?i_g_%dt],
2 1 2 b,

t

(-}
{

N

for t > tg, it is sufficient that there exist two quadratic forms V and W
satisfying the conditions;

(1) V is nonnegative and satisfies

oy it £V < 2

-)Zl(t) r2 £ W<€ — 7Z2(t) rz;

) P(0) >0,6,)>0, fort »0and X1, ¥2

g1 g2

(2) W satisfies

are integrable in any finite interval;
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4y W o= V3

and where

A

L mSAG 6 Ao

~e.

?2 -6'37{1(t) +€, 7{2(1:) )
S, = 1for ¥, 30,

S, = Ofor')z]_(O )

€y = lfer¥;<o0,

&

N
1

= 0 foryl }O."

Corollary 10

"If the function

3 -k t
W (t, to) = xof () # exp[ 2 | H dt]

is bounded for all to > 0 and t > tg, then the solution x = 0 of (10)
is gtable. If in addition ¥ (t, ty) — 0 as t ——» 00, the solution x = 0

will be asymptotically stable."

So far we have considered only the homogeneous case; we now turn to the

perturbed linear system.

%o

=A@ x + g (£, 3 . (16)
If the function g (t, x) is properly restricted, then the asymptotic

stability of (16) will follow from the asymptotic stability of (10). We now

state some of the possible restrictions on g and the corresponding types of

stability imposed upon the system.

Theorem 12 [1]

"et >\ (t) be the langest eigenvalue of 1 {_A_(t) + AT (t)} . Let
2 .

t
Lim |1 A () ds]=c<o
p—eo| ¢
[e]
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and suppose that for all € > O there exists a é‘(e) such that
"g (t, | < € | x]| for all x where ”35” < 4. Then the solution

x = 0 of (16) is asymptotically stable."

Theorem 13, [16]
"Let g (t, x) satisfy the condition
& e, ] € ne) | x| -
when |x|| < H € oo forall t > 0. Let h(t) satisfy h(t) dt <

o
< 00. Then if the system (10) is uniformly stable (i.e., all solutions undormly

stable), the solution x = 0 of (16) is uniformly stable."

Theorem 14 [16)

"Let g (t, x) satisfy the modified Lipschitz condition
l& € ox) -5 ol €00 [l - x5

for all t > 0 and Izl < oo, ”52” < 0o. Let h(t) satisfy

f h(t) dt < oo. Then, if the system (10) is uniformly stable, the

o
system (16) is uniformly stable.™

Let us now consider the system discussed by Kreidner, [6]:
x(t) = A(t) x (r) + B(t) U(r) ,

() = C(t) x (v)

S

(17)

where x(t) is an n-dimensional state vector, U(t) is an R-dimensional input
vector, and Y(t) is an m-dimensional output vector. Assume that matrix A(t)
satisfies a global Lipschitz conditionm:

oA )| € & <oo, for all t. (18)
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We are interested in determining the stability of the system (17) from the

stability of the homogeneous equation

(t) = A(t) x(t). (19)

We know that a unique solution of (19) exists for all t because of

1%

condition (18); let this solution be given by:
xt) = F(ee) x (t). (20)

Then the solution of (17) is

t
x(t) = £ (t, to) x(to) + / f(t,’t) B(T) U(r) d=.
to

t
¥ (r) =f H (t,T) U(v) dr, (21)
to
where H(t,T) = C(t) & (£,T) B (T).

Before stating the main theorems of Kreidner we need some definitions.

They are as follows:

Definition 1

"The equilibrium state x = 0 of (19) is exponentially stable if the
Co(t-ty)
solutions (20) satisfy //_)g(t)l} < C - ch_(to )“e_ for every to and

fort = to, where C] and Cp are positive constants independent of to."

Definition 2

"An unexcited (i.e., x(to) = 0) linear system is output stable if every

uniformly bounded inmput, ||U(t)|| < C3 < o0, produces a uniformly bounded

output " Y(t) ” < C‘? < o0 for every to and all t > to."

The results of Kreidner are now given in theorem - form.
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Theorem 15 (6]
"Let ”}_(t)// £C5 < 00 and ”C(t)// £ Cy £ oo for every to and all
t > to. Then exponential stability of (19) implies output stability

of (21)."

Theorem 16 [6]

'"Let B(t) be such that each row has at least one element b“(t) satisfying
,b“(t) | > 07 > O for some to and all t 2> to. Suppose that every column
of C(t) has at least one element Ctj (t) satisfying [Cij (t)l > Cg > 0 for
gome to and all t >, to. Suppose further that the system (17) is completely
controllable and completely observable, that is, respectively,

B(T) §T(to,’t) A ‘#‘ 0 for some to, all 7T > to, and every A # 9;

and Q_(t)I (t, to) A_ # Q0 for some to, all t > to and every #_ 0 in
state space. Then, output stability implies exponential stability."

By strengthening the hypotheses slightly, theorems 15 and 16 can be combined

into a more compact formj that is:

Theoxem 17 [6]
"Exponential stability and output stability of a linear system (17) are
equivalent if the following hold:
(1) the system is completely controllable and completely observable;
(2) 0<@1 £ ”ET (t) A //<@2<oo for all t and every finite _>_\_ # 0
in the state space}

(3 o < Xl < /}Q(t) X ” < Y 2 < o0 for all t and every

finite A # 0 in the state space."
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‘ (III) THEOREMS ON THE STABILITY OF NONLINEAR, NONAUTONOMOUS SYSTEMS
We begin our discussion of the nonlinear case by considering the system
of "first approximation." Consider the system
2 = B(t)x + g(x t) (22)
wvhere the components of g (x, t) one analytic functions of X for all
t 2> 0 and all x such that |x/) < A, A > ‘0. Assume that the power
series expansion of g in x begins with terms of the second degree or higher.
In this case we call the system
x = B(t) x, (23)
the system of first approximation. We now state a few definitions.
The first definition which we consider is what Liapunov has called the

characteristic number of f£(t). (The following discussion is taken from

reference [17§. The function f(t) is bounded for t > O if }f(t)} < A for
sufficiently large A, and unbounded if [f(t)| > A for some t, no matter

how large A may be. A functiom £(t) is called vanishing if Lim f(t) = 0.
t —»o00 at

It can be shown if there exists two numbers a and b such that f(t)e is

unbounded and f(t) e_bt is vanishing, then there is a real )\ such that, for

ORI X-91- (X- et

is unbounded and £(t) e is vanishing,

any € >0, £(t)

Definition 3 ([17]

"Liapunov has called the above number )\, the characteristic number of £(t).

One can also show that

== 1lm  _lgw] 7

t — 00 t
Some important properties of characteristic numbers are now listed.
(1) The characteristic number of a sum of two functions is the smaller of
éhe ﬁwo éhafacgeristié numbers if the latter are different; it may

be smaller than either when they are equal.
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(2) The characteristic number of a product of two functions is not less than
the sum of their characteristic numbers.

(3) The sum of the characteristic numbers of £ and 1/f is not greater than
zero, it is zero if and only if (Uw|f(t)] ;//t approaches a finite
limit as t — o0.

(4) The characteristic number of a product of f and some fdnction g 1s equal
to the sum of their characteristic numbers 4f the necessary and
sufficient condition in (3) is satisfied.

(5) The characteristic number of an integral is not less than that of the
integrand.

(6) Every nonzero solution of (22), where the Pij(t) ane finite for t > O

and are continuous, has a finite characteristic number.

Definition 4 {7]

"A system of n independent solutions of a system of differential equations
is normal if the sum of the characteristic numbers of all remaining independent

solutions attains its supremum."

Definition 5 [7)

"A system of differential equations is regular if the sum of the characteristic
numbers of the normal system of its independent solutions is equal to the negative
of the characteristic number of the function

exp { - J‘ %; Pgg (t) dt} where P (t) in (22)
is expressed as [Pij(t)J M *
Consider the case where the system of first approximation is regular. The

following theorems deal with the stability of the undisturbed motion of (22).
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Theorem 18 (Liapunov)

"If the system (23) is regular and all of its characteristic numbers are

positive, then the undisturbed motion of (22) ia. asymptotically stable.

Theorem 19 (7]

"If the system (23) is regular and if among its characteristic numbers
there exists at least one negative value, then the undisturbed motion of (22)
is unstable.”

Now consider the case where the system of the firpt'approximltion is not

regular. Denote by 4 the determinant consttucted from the functions xij(t)’
where Xjgs o 0 o 5 Xy T = 1, . . . , n are the components of the normal
set of solutions of (23). Denote by A ijthe cofactor of X § in A. Denote by S

the sum of the characteristic numbers of the normal set of solutions and let A

be the characteristic number of the function 1/A . Call 6=~ § -'X¥.

Theorem 20 (Liapunov)
"If the system (23) is not regular and if each of its characteristic

numbers is greater thane, then the undisturbed motion of (22) is asymptotically

stable. ™

Theorem 21 (7]}
"If the system is not regular and the smallest characteristic number is less
than — o, then the undisturbed motion of the system (22) is unstable."
We now turnm to a more general nonlinear, nonautonomous system given by
= £0, . (24)
We require that the components, fs, of £ be real functions in some
region (h):

t > 0, “5J| £ R, . We also require that f5(t, 0) = 0 for all g, fg be
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continuous in t, and that fg satisfy the Cauchy condition relative to X] 5 o o o 5 Xy

(The Cauchy condition guarantees the existence of a solution of (24).)

Definition 6 [8]

"Suppose that in some region (g): t > O, ”_:_:_” < r (r £ Ry), there is

defined a continuous function V(t, x) which is of definite sign and positive for
any fixed t > O. Suppose there exists some real constant a > O (a < 1)
such that for every initial value to >, 0 and for every given & > O there
exists a valueof t = T(€&, to) such that in the plane t = T of the region(g)
one can always connect the point ©(T, Q) with the surface [/x|/ = a by means

of a continuous curve ['at all of whose points V(T, X) < €. Then, we shall say

that the function V is positive weakly definite.'

Definite 7 [8]

"Let V(t, x) be positive definite in (g) and let *rl >0 be an arbitrary
given number. Denote by D(vl) the set of all those points of (g) at which
v(t, %) < " - Let t = t' 2 0. The intersection of the set D(‘»Z) with the
plane t = t' in (g) we shall call O‘(ﬂz, t'). If for every sufficiently
small ‘fl>0, the maximum norm of the points (t', x) € o (wz , t') satisfies the
condition

Max ||x]) —> Oas t' ___ _,00 ,
then we say the function V(t, x) is positive strongly definite."

It can be shown, [8], that if V (t, x) is the positive definite quadratic

form

Vo=x . A() x

and >‘|’ is the smallest eigenvalue of A(t), then V is positive strongly definite

if and only if lim >\1(t) = oo and V is positively weakly definite if and

t ——» 00
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only 1f 1im X\ 1(t) = O.

t—s 00 ‘
We now return to the problem of the stability of equation (24). The next

seven theorems will summarize some of the results of Persidskii and Zubov,

Theorem 22 [8)

"In order that the solution 5. = 0 of (24) be unstable, it is necessary and

—

sufficient that in some region (g)t t > 0, l2]l £ r £ Ry, there exists
a positive weakly definite function V(t, x) such that V > 0 on the basis of

equation (24)."

Example [8]

Consider the third order system given by

X = - 2Xyz,
oo 29
. —_— + X2 H)
y =)t + 2 {
2 z 2
Z = + x
t+2 y

Let V be defined by the following:

(t + 1)
e+ 22

N ji-t

2 2 2
V(t, x, y,2) = x 4+ + 2 +2

This V - function is positive weakly definite and the corresponding \;' is:

. 2 2t _+ 3
V=t+2{22+ y2 +[t +2]2y+x2(t+1)(2-2+ yz)} )
V. % o,
Hence, the zero solution of the above system is not stable.
Theorem 23 [8_]
"In order that the solution x = O of the system (24) be asymptotically

uniformly stable with respect to the coordinates of Xo5» it is necessary and

sufficient that in some region (g): t > .0, “_:5 || €t £Ry , there exists a
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positive strongly definite fumctiom V(t, x) such that N.I(t, x) < 0 in view of
the system (24)."

For the next theorem, Zubov [6]requires that £ (t, x) be definmed for all

t 2 0 and all x in E;. Also, it is assumed that x = 0 is a solution of (24).

Theorem 24 [5]

"In order that the solution x = 0 of (24) be stable it is necessary and
sufficient that there exists a function V(t, x) defined for "_:_g" <r,t > 0
with the following properties:

(1) V is positive definite;

(2) V(&x,t) —»> 0 as [/_15[/——9 0 uniformly with respect to t;}

(3) the function V (t, x (t, to , Xo )) does not increase when t 2 t,

where “_:_c_ (t, to » 3_:0)” £ r.
If furthermore, V —» 0 a8 t — + 00 when ”1:0” < J‘, then the solution

x = 0 1is asymptotically stable."

Now, Zubov requires that system (24) have a solution x = g(t, ty, Xo) for
any finite (x,, t,) belonging to the region t, > O, “_}50“ < H. Assume, also
that £ (t, 0) = 0 for all t > 0. Consider two continuous positive
functions }f(t) and KX (t) defined for all t > 0.

Assume that
t

-1 -
X (t, t, k) = kil ;é(to) 7! (t) exp [-f kﬂu\}dt} — 0,
to

and

t -1
7L 7! dt —» o0 as t ——» 00.
to
Also, assume that 7(» 1s bounded for all t > t, 2> 0, where k and k{ are positive

constants.
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Theorems 25 (5]
"In order that the trivial solution of (24) be asymptotically stable and that
any solution beginning in a sufficiently small vicinity of the semi-axis x = 0,

t 2 0 satisfy the inequality:

2 2
Lo R ton k) [iz]] e flx (s g0 ) )% L o KCEs €4 1) o))
1t is necessary and sufficient that there exist two functionals V and W of the form
: , K
= 5] D A x AWM x,
k
Ve o)z x B x

and having the following properties

(1) V. and W are defined and continuous when

”_75”2 < J]_ » t > 0 for sufficiently small J‘l;
@ =z * g 2 A0 x a2z 2
by Ja)) * s 2@ 2 Sv, x| ?
where al’ az, bl, b2 are positive constants;
(3) W is continuous and \.7 = W."
Theorem 2§ [5]
" Let

k\+7 Zeo 4w
><.(t, to, C) = t —
2 f ") L-k
- d
1 + ¢ to)b\/ qé([,-p 1)(t) t

where k, L and ¢ one positive constants, and [ » k. Assume that KZ —> 0 as

t — o0 and is bounded when t > to > 0 and C > 0.
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Assume that the quantity

t
k+1
@-J '}L\/ ¢-(L+ 1)
to (t) dt — + o0 as t —»+ 00.

In order that the trivial solution of (24) be asymptotically stable ‘and in order

that the inequality

Mp ”50”2%20:, to, M, C) £ “ 3:_.(‘;, to, x,) ”2 < N, ”_1_:,0 ”2 ><2(t, to, N, C)

. ‘ L-k
k+1
where C = [( “,_50" )2 N/ ;5 (to) :’ , be

~satisfied for any solution beginning in a sufficiently small vicinity of the
semlaxis x = 0 , t > 0, it is necessary and sufficient that there exist
two functions V (x, t) and W (x, t) having the following properties:
(1) V and W are defined and contir;ﬁous fort > 0, //_)_;_”2 < J < H 3
@ V=) D" F® x,A0 x,
We-Cxpd A® xB® x;

where A and B are such that there exist positive constants a;, a5, by, by such

2 2
a |5)° £ =xp A®) x £a, [x/
by //-’S//2 £ x7pB(t) x £b, //5//2 3
(G) W o= v."
Theorem 27 [5]
"Let 1- L!

t -1

Ha(t, to, C, L) = ;ﬁ(to) ;é-l(t)\/ 1+ ¢ '}L ;zﬁ dt

to
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where | >1 and € 2> 0. Assume that R shas the following properties:

(1)X3 —_— 0 as t —+ 00 ;

(2) 3 4s bounded when t > to > O and C > O;

t
-1
(B)ny dt ——» + 00 as t — + 00 .
‘to

In order for the trivial solution of (24) to be asymptotically stable and in order

that any solution beginning in the vicinity of /I?-‘-o” < J , to 2 0, where
J’ > 0 is sufficiently small to satisfy the inequality

My Vy G ) AaCts to, My 6L, L) £ ¥y (xle, to, x)) &

ﬁNl V]_ (_50) X3(t) to, Nzc(L), L) ’

L-1
‘where C(L) = [;‘(to) Vl(ﬁo)] and where Vi is positive definite, it is
necessary and sufficient that there exist two functions V(t, x) and W (t, x)
satigfyin

g the conditions:

(1) V and W are defined and comtinuous in a sufficiently small vicinity

of the semiaxis t > 0, x = 0 ;

() a p(t) vy ® £V (x, 1) £ a, () Vi (®) and W = - LWy

where Wi satisfies

L1 L2

by vy ﬁ—wlébz V]_)

where a; , ap , by , by are positive;

(3) W = G.n
Theorem 28  [5]

"If there exist two functions V (t, x) and W(t, x) with the following properties:
(1) V and W are defined and continuous in the region t 2> O, //_25//2 < CF,

where Cr > 0 is sufficiently smallj
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-1
@ 4V @V (O] £ 8w,

l)1 LZ
by Vi @ P(r) £ =W (t, ® £ bV @ ¥®)

where 1 <L1 < Lz;
(3 W =V,
then the trivial solution of (24) is asymptotically stable and any solution beginning
in a sufficiently small vicinity of the semiaxis x = 0 , t > O, satisfies the
inequalities
Vi) My (3t to M0l by £ViGae, £y, %)) £
£ N1 (x0) K3t tor N2 C(l2), L2,

L-1
where C(L) = [%(to) Vl(_iso):l

We now consider one theorem dealing with the problem of stability in a finite

interval of time. This work is due to Kamenkov and Lebedev and is reported in

reference [4] , by Zubov.

Definition 8 [4]

"The homogeneous solution of system (24) is called stable for a given to

in relation to a positive definite function V (x, t) in the interval T if from

Vl(go, to) = a it follows that V;(t, x,, to) £ a for(to €t <€ t, + ’l’)for

every sufficiently small positive a, where Vl(t, X5 to) denotes the value

"
to-

V (%, t) on an integral curve passing through x, at t

Definition 9 [4_]

"The homogeneous solution of the system (24) is stable in a finite interval

for a given to, if there exists a positive constant ¥ and a positive definite

function V(x, t) such that in relation to V the homogeneous solution of (24)




- 31 -
is stable in the finite interval T".

Consider the system

1%

= R(t) x + £(t, ® B (25)

where P is real and continuous for t > O and the components fg of f satisfy

n c
|£s| £ Pact) {f‘_‘l xf} (26)

where C > 1/2, and }5 g 8re continuous and positive.

Theorem 29 [4]

"In order that the homogeneous solution of (25) be stable in a finite
interval for a given to with respect to some fixed quadratic form V (V is
positive definite), it is necessary and sufficient that fg satisfy (26) and

the eigenvalues of P(to) have negative real pirts."

IV METHODS FOR CONSTRUCTING LIAPUNOV FUNCTIONS

W AV S AR ¥ LLdd VANV Y L UINWA

In the first method we transform the system of equations into normal cagrdin-

ates and then consider a Liapunov function which is the sum of the squares of

the normal coordinates. Btillgakov Elj studied this transformation in detail,

but the work is in Russian and thus we will consider the discussion of this trans-
formation which is due to Roitenberg, reference E9]

Consider the system of linear differential equations

n
> /6 @ x = 0 (j=1, ..., n) (27)
K=1 “jK K
(o) L (1) L-1 (L-1) (L)
where)zgx(n) = ij(t) D + I}K(t) D +.. .+ bjt.(t) D + ij(t)J‘
d (s) (s) (s)
:D=:|—+,_ ) L.S ® = b (t)—a , and

jK JjK jK
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(s)
where a.J'K are constants. Then we reu.r.Lta}j{K(n) as

;!<n>=f<n)+L<n>,
jK JK JK

(0 L + (L-1) (L)

Eg® = a D 4. 8 D+ oAy,

(0) L (L-1 (L)
Lg® - L‘jx(t) D +. .. +L (t; D+ e

The system in (27) becomes

n | n

xgl fjx(m x == El lecn) x¢ (=1, ..., 0. (28)
Notice that the f»jx(n) are polynomials in D with constant coefficients. Consider
the eigenvalues of the operator matrix [fJK(Dﬂ ; denote the real eigenvalues by
Ky (g =1, ..., N') and the conjugate complex eigenvalues by (é‘hii u)h)
(h =N +1, ..., N' + N')., We assume that the eigenvalues are digtinct.

We now transform the system (28) from the original coordinates, Xs) to the .

normal coordinates, gg,gﬁ,’?h (g =1, ... , N' 3 h=N" + 1, ... , N* + N".

The formulae relating the coordinates are as follows:

N'4N" j=1, ..., n
x;s) = / [__j(ge) J+1.§1 _(h) %h Y?:'rzh) ,)@=0, 1, ..., m- 1
£ RO P ey
i(?; - Nj;h)sin (Yﬁh) +e 8§,

W e,

where Ch and Sh are determined by
. Sn

€, + 1u)h =c €
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The quantity _)_{_J. is the j th element of the non-zero column matrix X, of the

ad joined matrix E(Kg) constructed for the real root Kg. The quantity N
_() ()

X j + LY, is the Jt:h element of the non-zero column matrix xh of the adjoined

- J
matrix F(eh-!- i b()h) constructed for the complex root €

the order of the highest derivative of x. on the left-hand side of equation (28).

_ J
The right hand side of (28) transforms to:

Aj(gg’ gh’yzh’t) = _"Z L (D) xK =

N' l+

Mig (£) gg e [/fjh(t)gh"'ﬂx(t)”? ]

Finally, the system in normal coordinates is given by:

ég - X, g, [_(T?gJ ‘ [g By (g.)/XKJ

(g =1, ..., N")

g=1

[ 4

1 M n PN
. D - €Ey- jW4 g
gh= €n §h+"‘)h”"(h+ 2 Re A (D) _] I_Kgl k Ak_l
D=€ +iw
h h
- fn- W re @ 7
Y)h=ehw7.u)h -2 1Im b Zh 12 B A
( h L A (D) k=1 K K]’ (29)
D=éh+ iu)h

(h =N' +1, ..., N + N,
where A (D) is the‘dete'rminant of the operator matrix [f jK(l))] .
We then choose as a Liapunov function the following:
N' 2 N'+N"

2 2
V=-1/2 g; 3 +h;4"_’+1 (§h+7h) .

g

Since V is always negative definite, the stability of the system can be examir-

- (8) i XJ.(h)=

A u) The quantity m is
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‘ +
29).

i

by considering V with respect to system

Example [9]

Consider the system of differential equations:

axy + iz = 0,

:‘:1 - b/a x, -bk/a x5 + bk/a x, = O, (30)
- M(t) X1 + Cxy + :.<3 + cx5 = o,

x4 + c x4 = 0,

where M(t) is bounded and we assume that IM(t) | £

fa. Thus, the third

equation in (30) becomes.
- faxl + sz + ).(3 + CX3 = S(t)xl N
where S(t) = M(t) - fa.

Then - 2fa < S(t) € 0. With this modification,

(30) corresponds to system (28). The eigenvalues of the matrix [ij(D)]

2

are the solutions of (D + C) [D3 + € + b(L-£fKD + (1 -k)bc] = 0.

Assume that this equation has two real roots and one pair of complex-conjugate

complex roots, denoted by Kj, Ko , € + 1w ; and let K} = - C. Thus the

transformed system in the normal coordinates gl’ ;2, %’3, ? is given by:
3

§,=X.5,

§2= [7{2+ a, S(t)ng-}- ay S(t) §'3+ a, s(t)723,

§3= bys(t) £, + [€+ by s(t)j £, + [W+b, s0)] 3>
723 6, s(t) §,+ [-w+ Cy S(t):lg3 +[é+ C4S(t)J '?3,

where the equations of transformation are

gz * My Sat M 7(3’

]

Ra(l2 + ©)
Xy = (f'}{z-i- C) a

K2 + ¢
XZ =—fK2+C

§2+ N £ 3+ N27L3,
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X3 §1+§2+§’x4=§1’

. and where
Ml = 1 2 2 wz 2
al fé + c(l1+£f) & + (¢ + f YE —cw(@ - £) ,
2
M2=_.‘*9_{fe + 2e + o + EW
al
Nl s —%—{fe + c(l+f)e + & + fw}’
2
= - 2 2 2

N, %—- 1-f},L= 2 e? 4 2efe + c + £U,

HZ(HZ + ¢)
a, = - {(f}(2+ cia a3 = MM e, = AN,

XZ(HZ'I‘C) _ -
b, = {(f Ky c)a} » b3 = MM, by = AgMy,

XZ (Hz.+ c)
cy = {(sz +o) a( 3 T AN oy = AN,
\ - . L ro. . ) -
ﬂz = 121 C) DK, A3 = L(te -+ C) T3 + tUJT4J bk,
A, = [(fe +e) T, - fwry] bk,
B, - { 1 )

((X2+ c)[()<2'é)2 +w2J§
T - - (2 € -HZ + c)
3

[(€+ c)(€e -Xz) —LOZJZ + [(26 -}«2 + c)u)_jz

(e+ o)(e- K2y - w?

T {[(e+ (€ - Hy) -wz_']+ [e- K,+ c)w]}

Select the following Liapunov function:

V=- 1/2{§12 + gzz + _?32 + ?32} >
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where

vV = (§1,§’,§32?3) A (§1’§2’§3’73)T ’

- K1 0 0 0
A = 0 |-, as(t) | -k(ag +bs(e) -5 (a, +c,)S(t)
0 -%(a3 + bz)S(t) -€ - b3S(t) -%(b4 + c3);(t) |
0 “5(a, + c,yJs(t) | -5(b, + c3¥5(t) -€- ¢,8(t) o

For asymptotic stability of the trivial solution of (30), the matrix A must be
positive definite for all £t > 0.

The following algorithm [10]15 similar to the above work. Here we consider

the system

X = A() x, (31)

1%

where A(t) is real. Since A is a square matrix, there exists a transformation
-1
matrix T(t) such that the similarity transformation (T A T) takes A(t) into
-1

a Jordan canonical form; that is, the matrix J (t) =T A T consists of one or

more Jordan blocks which are square arrays of the form

N |1 0 ) 0
o |\ | 1 0 0
0 | o \ 1 0 ,
o |o 0 o ..‘.\>\

where A\ is an eigenvalue of A. These Jordan blocks are located along the principal
diagonal of J(t) and all the elements not contained in the Jordan blocks are
equal to zero.

We define the matrix P(t) by
* "'1
B(t) = [I. (t) T (v >
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where (*) denotes the conjugate transpose of I. The Liapunov function to be used

in the stability studies is defined as

V @ t) = x B (t)

(E]

From the properties of the transformation matrix I, it can be shown that V is bounded
and positive definite. The time derivative of V is given by
. *
v =- X Q(t) X
- -1 * -1 - -1. j
where Q(t) = [1 fr‘ M(t) T and M(t) = - [_J_(t) + J (t)J + l:(l D T D
If M(t) is positive semidefinite, the system is stable. If M(t) is positive definite,

the system is asymptotically stable.

Example

Consider the system

X1 0 0 X1

}.{2 a(t) a(t) X

The matrices J(t) and T(t) are given by:

0 0 1/ /2 0
I() = >, I(t) =
0 a(t) - 1/\[2_ H
The resulting M matrix is
e = - (g £ 120 .
0 -2a(t)
thus, the system is stable when a(t) < O fort > oO.
NOTE There are many cases where M reduces to the form M = - [g + ,l*] . This form

occurs when A(t) is time invariant, A(t) is symmetrical for all t > to, or when
A = B C, where B is a time varying symmetrical matrix and C is a time invariant

positive definite matrix, or vice - versa.
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We give two variations of this method, E(ﬂ . Let V(x, t) be the Hermitian form

(t)
V(x, t) _e’l x° P () x,

- X Q) x,

\.7(5, t)

[

where P is given above and ‘yl(t) is such that Q is "just" positive semidefinite. The

Q - matrix is given by

*
a(e) = [17]] { @+ 3"+ i+ @b Ao 1} 1.

We choose 'Tl(t) as the instantaneous minimum of the solutions, )\ , of the equation

Det{-@ N+t o+ @Dt o- /\I} = o.

thus, the system (31) is stable if

lim [7{('17) - ‘I('(to):l S o,

T —— 00

The other variation, [10] , is as follows:

as before we define T(t) by the equation J = _'[-1 A T and we let V(x, t) = x* P(t) x.

The time derivative of V is taken to be V (x, t) = - x* Q(t) x; but instead of defining

B(t) byT* P T = T, we let T (Q + P) T = I and define the matrix D(t)
as D = T P T. Now if Re(J) is a non-singular matrix, D(t) can be computed from
the formula J* D + D J = - I and Q is given by

-1 o '10
't - @ 1)*2}1 :

o
[
(=}

Q) = (mo f1+ DT
Then if it happens that Q is positive definite for all t 2> to, the following criterion
on D will determine the stability of the system:

(1) 1if D is positive definite for all t 2 to and decrescent(i.e., xX* D x —» 0

uniformly in t as x* x ___ 0), the system is asymptotically stable;

(2) 1if any eigenvalue of D is negative for all t 2 to, the system is unstable.
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The following algorithm is due to Szego,[lZ:]. Consider the linear, nonautonomous system

x = At) x, (32)

and introduce the following quadratic form

\

\

| V& t) =xpe(t) x,
- where c¢(t) is the solution of the equation

’ a(t) A(t) + [g(t) A(t)] r = S®)es- B(t) - %O L. (33)
|

}The function ’)é(t) is a positive; differentiable scalar function; B is a symmetric

'matrix to be determined; (c - s « B) denotes the Schur's product of ¢ and B (f)e:, the .
!

‘matrix formed by multiplying the corresponding elements of € and B); and the matrix C

[ '

' 1s symmetric. The solution of (33) has the form

\
')"(t) G (aij’ bij) s

where A = [aij] and B = [bij]' We shall denote G (aij’ bij) by G(t). When

‘ c(t)
|
|

-computing G(t) we fix some elements of B(t) we fix some elements of B(t) to assure

F 4] . N

! ,< G {i=1, ..., n) foraillit > to. The other eiements of B are
"arbitrary and one then can compute ¢ from (33), where ’}L is to be determined later.
‘;(5, t) will be negative definite if the matrix D(t), given by
D(t) = G(t)-s-B(t) + G(£) + B(&) G(r),
where f!(t) = '}Z(t)/}é(t), is positive semi-definite. One chooses the value of

‘¢(t) such that D is positive semidefinite and then computes}é(t)o Thus, V is

negative definite by the choice of%; then the matrix G(t) is examined to determine

'1f V(x, t) is positive definite. 1In summary, the sufficient conditions for asymptotic

stability of (32) are:

[GZK(t)l >0, K=1,...,32

for t 2> to, and even n

(34)

==

(t}’ >0,K=1, ..., n-lfort' > to, and odd nj
2

/ G
2K+1

and if the order of G is even, lgl > J‘ >0 for all t >

>, to, and if the order
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¢ .
of G is odd, ,_@,(- é‘ < O for allt > to; and — o0 < %(t) dt
to

for all t > to. The lgi(t)l (i =1, ..., n) are the principal minors of the

determinant /QI .

Example  [12]

Consider the system:

.

X1 T %25

X, = B {EIXL 4 p %2 g

where Pl(t) is a differentiable, bounded, always negative, and decreasing function

of t, and P, is a negative constant. The form of V(x, t) is:

2 2
V(x, t) = Cll(t) X1 + 2C12(t) X1x9 + sz(t) X9 .

From (33), we compute G. For simplicity, let by, = byy = 0, then

2
g11(8) = EATS) {Pl(t) - Pf () - Pzzg
1
812(t) = &(t) {21’2 - by (t) Pl(t)}
g22(t) =

1
T {F;b11(t) HERXCE 2}
where S(t) =2 £2P1P2 + b11[.:1322 B Pl]}

Choose bj; such that V is positive definite and then examine the restrictions which

must be placed on the system to make v negative definite. To satisfy (34), let

by = 2p12 - The other conditions for V to be positive definite reduce to

2
811 822 - 812 > TL for t > to,

where’r(is a positive constant. This inequality yields the following condition on the

Pi'S:
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2 3 2 3 4 2 3
SR I TP PE S S Tl

(35)
- P ‘P16 > T(fort >  to.
’ The remainder of the computational procedure will now be outlined.
i The D(t) matrix can be expressed in terms of the elements of G, B and the
l unknown function%. The semidefiniteness of D and equation (35) impose restric-
‘ tions on the 74- function. From these restrictions on }zf, the }l- function can
; be determined. Finally, the C matrix can be determined from }éand G. Thus, from
|
‘ the V(x, t) function, formed from matrix C, the conditions for the stability of
X = 0 can be decided.
| Example [12]
Szegl found that for systems of the form studied in the above example, a
simplified procedure can be followed. Consider the second order system given by:
| hos,
E )';2 = a;(t) X1+ ay(t) Xy, _ (36)

' Let V(x, t) have the form

2 2
V= X1 + sz(t) X9 .
Then, \.7 becomes

. 2
V=201 + czzal) X%y + (2c22a2 + czz)x2 .

|
w’For a semidefinite {I, let 1 + cy5a3 =0, and 2c9y ay + 522 < O. Thus, the

resulting sufficient conditions for stability are

- 2a2 + al
a, ;% < 0, fort >  to,

-{alg > Ro(constant) > 0, for t > to.
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Special Case of (36)

Consider the system

};1 = Xz,
‘ ' (37)
X _{l Sa(x o+ b__ sin(ctj} X
2 t t(at - 1)
The stability conditions are
2b sin ct -1 £ 0,
t > K2 > 0.
at -1

The conclusion is that the solution x = 0 of the system in (37) is stable if

£ 1/2 and ato > 1.

b £
We now consider the work of Kupsov, reference [13], in which he considers the

following system:
% a, & ap, x
1 11 12 1 (38)
. (t) (t)
X2 21 Y] )
Theorem 30 [13]

"If there exists a constant M and a positive function S(t) which has a

continuous derivative on (0, O)) such that

t $ 2 1 7% S
25 + 417 = ay, + S (::121 + 5312) - 25 + aj; + a,dt<£M (39)

o
for all t > 0, then the trivial solution of (38) is stable relative to Xq.

Further, if

t . . . .
5 2 1 5
. 2s + a;q - 825 + S (a21 + Salz) + 25 + aj1 + ay dt <M,




|
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then the trivial solution of (38) is stable relative to x2."

Notes Concerning Kupsov's Work

(1) The proof of Theorem 30 is based on Liapunpv theory and the choice for the

Liapunov function is V = ET_g(t) X,

‘Where P =| A(t) B(t)
B(t) B C(t)
5(2) The necessary and sufficient conditions for the trivial solution of (38) to be
( stable relative to X) and x, are that C(€>// and A(t) be bounded,
P

respectively. It can be shown that 9/1 P } is bounded above by
‘ . 1/2
\ _S 2 1 9 /
| K exp . 25 + a;; - az% + S (a21 + Salz) +

where K is a specified constant. A similar bound exists for A/ |g| .

(3) 1f a21/a12‘10 and has a continuous derivative on (0, 00), we can choose
S o : — 39).
S a21/a12 and thus simplify (39)
(4) In the special case where equation (38) reduces to
X + P(t) x + q(t) x = 0, (40)

The conditions for stability relative to x of the trivial solution reduce to

o0

q(t) > o, ‘/o. [ ‘p + &/qu - + a/zq)] dt < oo,

(5) Leonov, refer to [l3], also studied (40) and obtained the following

results for stability relative to x:

WU > 0, p(t) + A/, (y ¥ O (41)
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If (41) is satisfied and &(t) is bounded in (0, O0), then the trivial solution of

(40) is also stable relative to x.

(6) If the Liapunov function of (40) is chosen to be V = X2 + 1/q(t) %2 ,
then V will be positive definite when q(t) > oO. 6 = - é/ 9 " 2 9/ Thus,
q q.
the trivial solution of (40) will be stable if q(t) > O and

at)  + 2 P(t) > o.
q(t) i A®)

Work of Narendra and Goldwyn [14]

In this work the existence of "Common Liapunov Functions" for linear time-
varying systems is discussed. The concept of the "Common Liapunov Function', C.L.F.,
was discussed in Section 5 of this report and will not be repeated here. We will
first summarize the topics which are discussed in reference [ﬁé]; and then we will
give a few of the time-varying examples which are presented in [14]. The results are
as follows.

(1) For a negative feedback system with G(s) in the forward path and a gain

K(t) in the feedback path (0 £ K(t) < X), see figure #1,

U

.
- > G(s) >
Figure #1
Y Time-Varying System
< K(t) .

it is shown that a sufficient condition to ensure the existence of a C.L.F. and

hence stability is that a/_ + G(s%] be a positive real function. A geometrical
interpretation of the above Ebndition ylelds a simple and effective method of
determining the range of stability from the frequency response of the time-invariant
part of the system.

(2) For specific time-varying systems, Liapunov functions that are explicit functions
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-of time are found to increase the stability range of a pargmeter over that given
by the C.L.F. An analysis of the behavior of the Liapunov function V in the
} V-G phase plane yields further insight into the problem of stability and leads
to the generation of Liapunov functions for an additional class of time-varying
! systems.
{(3) The problem of determining the entire range within which periodically varying
p;rameters may lie while assuring stability is intimately related to Floquet
theory. The generation of time-varying Liapunov functions in such cases requires

the solution of a matrix differential equations of the form

B+ EP+PRF=-0Q.

- The origin of this matrix equation is as follows: consider the system

I

; = F(t) x
|

' and choose as a candidate for a Liapunov function V = §T,£(t) X. One then obtains

<

=-x.Qt) x,
i

where Q is chosen to be semi-definite. Thus, we obtain the above relationship

between P, F, and Q.

Example [14J

Consider the system

He
N
i
1
—~
—
+
P
”~~
(nJ
N
N
»
H
]
N
(9) o
»
N

A C.L.F. can be found for the system when /L(t)/ £ 2 é‘ 1 —-SZ . The C.L.F.

may be taken as

1 & |
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and
251 +L(0)) 28" + (o)
- | ,
28" + o 2 &
For ‘ Loy | <2 g /1 - 52, V < 0 for any x and hence the null solution is

asymptotically stable. (It can be shown that no non-trivial half-trajectories of

the system lie on the set of points for which V = 0.)

Example [14]

Consider the equation

X1 = X2,
};2 = - b(t)xl - axyp,
Let V (x, t) be of the form
2
a a
V = xp x + 2 B(t) xlz°
a 2
(1) For the case when
t
B(t) = 1/t / b(u) du,
o
we have
ab - B b -B
V==-2 Xr X
b -8B a

. 2
For b(t) > B/a + [(b - B)/a > 0, the above system is asymptotically stable.
(1i) For the case when B(t) = b(t), the condition for asymptotic stability is

b>§>o.
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i"Work of Rohrer [iﬂ and[ia

In reference [13], Rohner considers the undriven, single loop, linear time-

variable network in Figure 2. The terms in the
\

| R(t) L(t)

l’ /‘\ __/C(t)
| q(t) 7]

O-- '
’ Figure 2

’ circuit are defined as:

q(t) = unknown current

R(t) = time-varying resistance
L(t) = time-varying inductance
C(t) = time-varying capacitance.

Rohner uses the Hamiltonian formulation of analytical mechanics to determine the
stability criteria of this time-varying electrical network. Upper and lower

bounding functions for the network's stored energy are obtained which lead to

sufficient conditions for network stability. The term stability as employed heve

means asymptotic stability in the large of the zero state of the network — where,

if an unexcited network is given an arbitrary initial stored energy distribution,
E(to), there is a net decrease in this energy over a given time interval, E(t) <« E(to),

t > to.

We now give a very brief outline of this work. The defining equation for

the system is

d | L(t) é} + R(t) q +_1 q = O.
dt c(t)

From the analytical mechanics approach, the Hamiltonian, ,>((t), is given by

| _s_z
N = o {L(x) ax | E(t) ,
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where E(t) is the stored energy in the network energy storage elements. It can be .

shown by considering certain properties of){ that

E(t) £ E(to) Cc(to)

C(t)
when
-C + L + 2R > o.
C L L

Then ,C(t) E(t) is a Liapunov function; and for positive R(t), the above inequality

yields the Liapunov stability criterion
o<1-;{@_i}.
2 RC R
crhus, we have presented only a brief outline of the work in [13] and is in no way
a complete summary of Rohner's stability resultso)

In reference [ij » Rohner considers a general R(t) - L(t) - C(t) linear,
continuous time network. He studies the stored energy of the network)by considering
upper and lower bounding functions)to provide sufficient conditions for stability
and instability. In particular, if the stored energy decreases on the average, the
network is stable; conversely, if the stored energy increases on the average, the
network can be said to be unstable. This stability can be considered to be "asymptotic
stability in the large.” 1In the following paragraphs, we briefly outline Rohner's
procedure. (This procedure is related to Liapunov theory and thus is presented in
this report.)

The energy analysis on the loop basis starts with the second-order matrix

equation:
& Lo i} + R(t) ¢+ 8() 4 = Q. (42

The terms in (42) are defined as follows:

L(t) = n xn inductance matrix,
S(t) = n x n susceptance matrix,
R(t) 2 n x n resistance matrix,
ﬁ(t) Z nx1 link-current matrix,
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' where L and S are symmetrical and positive definite.

'isgivenas
| E(t) = 1) g, L
; () _{_q.T_

2 T

+

114 L 4 - g8 g
2{% T

| +-&T[B+BT_—]'(‘1}'

The network stored energy

i+9§s},

<+

'We introduce an arbitrary time dependent function f(t), and integrate d(f E)/dt

5 from(to) to (t)to obtain the following:
I

t

1 .
‘ £(¢) E(t) = f£(to) E(to) + Ef _gT{f L
‘\ to
i - f [L + R + gT] } 4 dt +

t

-

1 [ . .
+2J {f§+f§j_th.
to T

The formulation in (45) leads to the following upper

network stored energy if the congruent matrices A(t)

I (the unit matrix) ,

AL L A
AT{L+B

where j_\‘| is a diagonal matrix which has the n roots

det{)‘].(t) L - .i_-'. - R - ET}

* s - Ao,

as entries; and

BrS B = 1,
B S =-A
3.8 B Llo(t),

and lower bounds on the

of

= 0

(43)

(44)

(45)

(46)
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where ./iz (t) is the diagonal matrix which has the n roots of

det {Az(t)§ + gz

as entries. The upper and lower bounds on [ (t), for the proper choices of

0 (47)

f£(t) in (45), are given by:

t t
E(to) exp -f >\ (x) dx < E() <€ E(to) exp -f >\ (x) dx
to L to u
where >\Lis the maximum root of the equations (46) and (47), and >\u is the minimum
root.

We now outline the energy analysis on the node basis. The set of network

equations is given by

L] .

d
E'E{g(t)f} + g(t)f T ) é = 0, (48)

where

I-e..

S n-vector of tree - branch voltages,
C(t), g(t) = positive definite, symmetrical matrices.

The stored energy can be written as:

E@ = {é}g g+ 4,041, (49)

N [=

rm
[}
'
N |

j‘.:Té £ - £L4 - fT[g v oo d

Proceeding as before, we obtain the following bounds:

3

t ' t
E (to) exp -/ )\'L (x) dxy < F(t) < E(to) exp -f }\' u(x) dx
to to

where >\'L is the maximum root and )\'u is the minimum root of the equations

det{)\4(t) Lo+ I_”} =0,
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‘and
det{>\3(t) c - ¢ - ¢ - QT} = 0.
From the above bounds on the stored energy, we can obtain some simple ground-

‘state stability criteria. The upper bound of FE(t) is given by the larger of

)\u(t)) >\' u(t) at each value of t, call the value U(t); and the lower bound is given

‘by the smaller of >\L(t) and S\ L(t) at each value of t, call the value L(t). If one

considers the net decrease in stored energy over [to, tl:las an indication of

“'stability, then a sufficient condition for stability is
|
‘ Uu(x) dx > o. (50)
'In a similar way, a sufficient condition for instability is
1
L) ax < o. (51)
t
{52)

For asymptotic stability (50) becomes
t

|
lim
U(x) dx > O.

t — o0
to
For a periodically variable network where all element (in the electrical system)

values vary with the same period T, thus U(t) and l(t) have the same period T, and

the sufficient condition for stability becomes
to + T
U(x) dx > 0; (53)
to
‘that for instability becomes
to+ T
Lx) dx < o. (54)
t
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Example [151 Mathieu's Equation

The normalized form of Mathieu's Equation is

'q‘ + (8 + €cos t) q = O.
In this equation L(t) = 1 , C(t) = 1 s
S + €cos ¢t
and R(t) = 0. Over the first cycle the energy is bounded by
E@W), 0 & teT
E() <
S +€cost), Tt < 2T,
E) S - ¢
and
S + € cost
E (0) S + e , 0 £t &eT
E (t) >
S - € , T &£t £ 2T,

E@ s +e
These bounds give no information about stability of this network except the "almost
trivial' case where € = 0.

But if some fixed resistance R placed in series with the above network is
considered, stability can be guaranteed. This resistance can be found as a function
of S and € by ascertaining the minimum R which assumes that E(27) =£(0). From (53),
this R is that which makes

2T

min | 2R, €sin t dt = 0,
o S + Ecos t

and it is given by

therefore,

R >
Z/SF-GZ (55
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"for stability. This is the same result which has been derived from Liapunov analysis

by Hahn.

" Work of Bongiormo [19]

In reference [19], Bongiorno considers an analytical technique for establishing
the stability of linear, lumped - parameter systems with periodically - varying
parameters, by means of analytically or experimentally determined frequency response
data. The theory as given is not Liapunov theory; but in one example; Bongiorno's’
results are justified by Liapunov theory. (For this reason, we inqlude his work in

this section of the report) The basic time - varying system is given in figure 3:

|

k(t) -
r(t) + e(t) /\ ke = m c(t)
0 N L L s e
Time-Varying Linear, Lumped
Gain With Constant Parameter
Period T ' System
L : -

Figure 3: Basic Time-Vaf&ing System
The application of the stability criterion yields easily obtainable bounds

on the amplitudes of the periodically - varying parameters that are sufficient to

insure system stability. The results which are obtained can in some cases be

. applied to systems with aperiodically - varying parémeters, as was vigofously

established for a certain case in referencelé@ »

The fundamental stability theorem of Borgiorno is:”

Theorem @g

"If in the system of figure 3, where k(tﬂ £ K and k(t) is periadic, the

following conditions are satisfied:

' (1) for K = 0, the undriven system is asymptotically stable; and
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jwt
(2) foro < K < Ky > no steady-state solution of the form < (t) is possible,
then for all 0 £ K £ Ky the driven system is stable for all bounded inputs.™

A sufficient condition for the satisfaction of condition 2 in the above theorem is

kK |¢ (jw)l < 1.
max (56)
The derivation of this result is given in [19].
Example [19]
Consider the system
\ 2
" , - = 57
X+ 25 Wx o+w, {1 k(t)}x 0. (57)
In this system, the expression for G(s) is
2
Wo
G(s) = 2 2
s° + 285 Ws + W
It can be shown that 'G (GwW) , max 1S given by
3 = >
[e Gw) | e =1 , 5/1/,——2 ,
o Y-
’ 2.
285 /1 -¢2 §
Thus, from inequality (56), the conditions for asymptotic stability are
K < 1 , §>/1/ V7,
(58)

< 285/1- & ,Sél/ N
)
By means of Liapunov theory, it is“nearly possible to reproduce the above

stability conditions. Liapunov's theory yields slightly more conservative results

in this case. We first consider two theorems before applying Liapunov's method

to (57).
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Tﬁeorem @ﬂ
"If the system is defined by
X + a x + b(t) x = O, (59)
and if 0 < m < b(t) < M, then the solutions of (59) are asymptotically

Lstable for all (a)satisfying:

[ ) < M - vm < a <«
|
|

i < M+ 2/mM + S5m0 . (60)
| oo
[Theorem

"If 0 <K b(t) < a2, then the solutions of (59) are asymptotically stable."
Proof |

|

|

| Write (59) in the following form:

} | xo = X1 (61)
|

.

X1

-ax] - b(t) x4,

]

rChoose the Liapunov function for (61) to be V = xo2 + (2/a) x,x; + (2/a2) X12 .

'The time derivative is

‘.I =-g{bx02-'- 2b x x; + le:%
a a

For asymptotic stability we require

b (1 -b/a2) > 0, (62)
or 0 < b(t) < a2, Q.E.D.
| When b(t) = Woz {1 - k(t)} and a = 2§ W,
in (59), (62) yields

o < 1 - k(t) < 4§2,

or
2
1+ K < 4°¢
(63)
1 -K > o0
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The inequalities (63), obtained by Liapunov theory, are nearly the same as the
inequalities given by Bongiorno's theory in (58).

Bongiorno in reference [19] also considers two other examples which will not be
given here. One example considers more than one parameter varying with time; and

the other considers a higher order time-varying system.
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MISCELLANEOUS SECTION

SUMMARY

In this section we have considered several different methods of obtaining Lia-
punov functions. Some of the work in this section could have been placed in other
sections of the report, but because the tir'ne. element this work has '"landed in" the
miscellaneous section. The 'physical structure" of this section takes the following

form:

(1) a compendium of examples, 32 in number, covering references [1:] to BZ_] ; the
"examples' may discuss the results of a single paper, some part of a paper, or

the results from several papers;

(2) a subsection titled "Random Contributions to Stability Theory" which includes
36 items which are briefly outlined; the discussion covers references [5.'2‘ to [ll@ R

including contributions from some Italian mathematicians during the years

1951 - 1961;

(3) a subsection outlining the contributions to stochastic stability, references rlS()_]

L

[181] :
=< 3

(4) a subsection outlining the contributions to partial differential equations,
@82‘] to [19@; to differential-difference equations, E19_ﬂ - [-32@ 3 to topological

dynamics and dynamic systems, EZZZ] to E239] .
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COMPENDIUM OF EXAMPLES

Example 1, h], Third Order Example

In reference [}] , Pliss proved the following theorem.

Theorem
(0) (i) If, the system is defined by

X+ f£(X) + x + x = 0
(ii) f£f(y) is continuous and differentiable for all y;
(iii) f(y) satisfies a Lipschitz condition for all y;

(iv) £(0) = 0, and df > 1 for all y;
dy

) then the equilibrium solution x = x = X = O is stable.
Ogurtsov, in reference [2], considers a more general case in the follow-

ing theorem.

Theorem
(H) (i) If, the system is defined by
‘X + £(X) + bx + a x = 0;
(ii) a > 0, b > O and constant;
(iii) f(y) is differentiable and continuous for all y;
(iv) f(y) satisfies a Lipschitz condition for all y;

(v) £(0) =0, and df y a/y for ally;
dy

(C) then the null solution is asymptotically stable for arbitrary initial

perturbations.




Proof

The equivalent system is given by

Y

=Yy

z - £ (x)y

g
[

N
it

- by - ax.

The candidate for a Liapunov function is

. <
2V = 23 Jf x £ (x) dx + 2axy + by2 +-22,

where V is positive definite by hypotheses (ii) and (v). The time derivative

of V corresponding to the above system is given by

' 2
-{bf(x)-agy <0,y;é0,
=0 for y = 0.

\'/

Since 2V can be written as

2
2 ax +
2V = J(x) +E+{77§r /;y}’

X ' 2 9
J(x) = 2a x f(x)dx - a” x°,
b
o
we must check Lim J(x) . If lim J(x) = oo

Ix]— a0 lx] —> o0
then V is infinitely large and all the level curves, V = constant, are closed

>

b

thus giving asymptotic stability in the whole space.
If lim J(x) - converges, then among the level surfaces of V there
XKl—> oo
will be open surfaces. But it can be shown that in general there is still
stability. The author considered the region defined by
V(x, y,8) £ L, |x|] 4 N, L>o, 8 > o.

He showed that for all t > 0, all trajectories of the system are inside

the bounded region. Thus, the theorem is proved.



Example 2, [2] Fourth Order System

The fourth order example of Ogurtsov is also stated in theorem-form.
Theorem
(H) (i) 1If the system is given by
¥+ £(X) + cX + bt + ax = O0;

(ii) f(y) is continuous and differentiable for all y;

(iii) f(y) satisfies a Lipschitz condition for all y;

(iv) £(0) = 0; ¢, a and b are positive constants;
2 2
) df 5 b; bedf _ b - aldf > 0,
dy c dy dy
for all y;

(C) then the zero solution is asymptotically stable for arbitrary initial
perturbations.
Proof

Let us consider the equivalent system

¥
]

y
y = z
. )
z = u - f£(y)z
1.1=-cz-by-ax,,

The candidate for a Liapunov function is

2
2V = (b~ <+ ac) x2 + 2bexy +(c2 - 2a) y2 + 4ax 2 + 2byZ +

y

2 2 !
+c&+ 2bxu + 2cyu + 2u + be f (y) ydy ,
o]




b2 + ac be a b X
2
=B, y,Z, u be ¢ -2a+b/, b c y +
a b c 0 Z
b c 0 2 U

y
+2b/ {f'(y) —-b/c} y dy .
o

From hypotheses (iv) and (v), we see that V is positive definite and
V —» 00 as []x// —— 00. The time derivative of V

with respect to the system is given by:

. 2 ' ' 2 2
V = - abx -2af (y) x2 - cf (y) 2+ b =°
! 2
{f (Y)z 22 ' a 22
= - a{bx2 +2f'(y) Xz + b2 — cfzz+bz-2+ p (£ -

(]

- a {ﬁ,‘ < + ﬂ; £ (Y)Z} tbcf ) - b2 - af (y)} 22

Thus, by hypotheses (iv) and ), vV o< 0 if x and z are nonzero and V 0

if x = 2z =0, Therefore, the zero solution is asymptotically stable for

arbitrary initial disturbances.

Example 3, [3] Ezeilo's Fourth Order Examples

In reference [3] » Ezeilo discusses two examples; these examples will be

written in the form of theorems.

Theorem 1

H) (1) If the system is defined by

e .00

X + f(x) ‘% +o(2;£ + g(x) +K,x = 0; (1)

(i1) = zand *«,are positive constants,
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t
(iii) f(y) , and g (y) are continuous for all y,

(iv) g(0) =0 and there exists > ; > 0 and °<3 >0
such that g(y) 3 0(3 s ¥ 75 0, and
y
(@ > 0(1 for all # ;
) there exists a positive constant AQ > 0 such that

{0(1 0(2‘ 8'()’)} °<3 '°<1 °<4 £@) > A

(o)

for all y and 2;

W) g ) - &y < crl , for ally # 0 ,
y
where 81 < 2%, Ao :
X142
3
r=
(vii) 1
y %f f(x) dx ¢ - £@) € Jz
(o]

for all 0, wh d, <214 5
or a z-;é where 2 E o/,(% °(3§

(C) then every x(t), solution of (1), is such that as t —w» 00O

L4 " o

(x, X, X, X) —_'_"(0: 0, 0, 0) .

Special Cases of Theorem 1

(1) When f = X, = constant, (vii) is trivially fulfilled. This is a case
which was discussed by Ezeilo in reference [5__]

(2) When f =eo( and g = 4% , %, and X4
being constants, the equation (1) reduces to the linear pvoblem considered

in the Routh-Hurwitz analysis.

Theorem 2

(H) (i) 1If, the system is defined by

X+ G K 4G+ og(®) + Kx o= p(t)
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(i1) hypotheses (i) —» (vii) in Theorem 1 are valid;

(1ii) pt
p(’t)ld’t" £ A < o0 forallt > 0;

o
(C) then for any finite X, 5 Yo s 2y » W,, there is a finite

constant D = D (x, , y, , Zo5 Wy ) such that the unique

s

solution x(t) which is determined by (x (0), x (0), §£(o), x (0 )=

(5, Y55 Z o> w,) satisfies [x] £ D , |x] €D , Il <D
|%] < »p . for all t 2 o.

If the following discussion we will give the Liapunov function used in
the proofs of the theorems, and we will outline some of the major points of
the arguments. But, since the entire proofs are very long, we will not rewrite
them.

The state variable notation or the equivalent first order systems, used

by the author are as follows: for equation (1),

X = Yy, }-' =z, é = W,
Vv=-w i@ - K- gly) - X% >
and for equation (2),
x = Yy, }.' =z, é =w,
Vo= -w @) - X,E -g(y) - Kx + p(t).

The Liapunov function used for both (1) and (2) is
2 2
2V = X ,d, x7 + (Xpdy - K dy™  +
Y 2
2
+ Zf 8(;?)d<2+(°(2d1 -dﬁ)i.'-+2fo(N) dN +
o

o
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z

2
o

+ 2d1Zg(y) + 2d,yw + 2 2w, (3)

where dj = €+ 1/, d, = e+0(%<3 d €>0
sy ana .

Lemma 1
"The function V defined in (3) satisfies the following conditions:
(1) V(o, 0, 0, 0) = 0
(2) there exists positive constants Dl’ D2, D3 and D4 depending
on €, Xy, Ky Xy X4 &y Ly

and A o such that

V2o x2 + D,y2 4 Dy 22 + D, W2,

for all x, y,-z, w provided o0<é& 561 , where él is a function
of °(i, é\j and AO'"

The proof of this Lemma depends on the following important inequalities:

d; - 1/£(® > € for all 2,

d - oy
— 2 € f 11 o,
2 ;(y) 7 or a y %
°<2 - dlg ) - .dz £(2) >/ _.._4._9___ - Doé,

=1 %3

for all y and Z, and where D, is a

function of the °(i's

Lemma 2

"There exists constants D6 > 0 y D7 > 0 s D8 > 0
depending only on €, < 1 < 2 X 3, X, and A such

that for solutions of (1) we have
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i € - (Dg y2 + Dy 22+ Dswz)
provided 0 <¢ < € 5 , Where €, depends on
<1, Xy, =<3, Ky and A,."

The proof of Theorem 1 is such that if € = Min (€1,€,),
then V is shown to be a Liapunov function and equation (1) is globally
asymptotically stable.

The proof of Theorem 2 makes use of the same V as in Theorem 1, but
the time derivative of V varies; that is

) =W + (yy + 2+ dpw)p(e).
Thm. 2 Thm. 1

Because of hypothesi‘é (iii) in Theorem 2, we have that for any t,
W) < 0. Thus, Theorem 2 is proved.
Thm. 2

Example 4, [IJ Ezeilo's Nonautonomous System

In this example we will consider a nonautonomous system defined by:

2= £@& o, (1)
where x, X and _f; are n-vectors. We assume that f and the Jacobian matrix
of f exist and are continuous. The norm, ”_)_{_” » of x is defined by
2
“?_{.” = X12 + xg + ...+ xi . As in the previous examples we will

state the main results and merely outline the procedure used in the proofs.

Theorem 1

(H) (1) If A = ( K 1 ) is a real, constant, symmetric, positive definite
matrix;

(ii) g 8['3@' i | is the Jacobian matrix of f(x, t);
ax :
h|
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(iii) D= A J , =’(dij) where each characteristic root
of 1/2 0] o+ _]_)_T) satisfies,
>\K < -S <0 uniformly in x and for t > tos
@ ¢ =c¢ oe.a x) > o,

c;=c WAy 3y .o

= = largest characteristic root of A,
p is a constant such that | € p = 2 ,
// is a constant such that 0 < /fﬁ cr 3

(C) then every solution x(t) of (1) satisfies

LA t P RH.
< - ) (K)‘[Cl + sz ” £(o, T) e—"( d‘t‘:l

for all t > ot

1/p

x(t)

o

Special Cases

(1) I1f £ satisfies one or the other of

06 P

max £ (,t) £, ¢t) dt < 0o
t 2t,

< 00, or

to

then the c&nclusioﬁ of Theorem 1 says that every x(t) satisfies

"_}5 ” é C, w__here C depends on £ and A, and C is a finite,
positive constant. That is /, _}5” is bounded for all
t 2 tg.

(2) If £ satisfies £(0, t) = O for all t 2 tg» then Theorem 1 implies

that 'e;zefy g(t) s‘;tisfies ”_:g(t)” .———u. Das t —— 00
In Theorem 2, Ezeilo specifies the sufficient conditions for

”g (t) ” ————» o0 as t—-—-—,. oo, but with £(0, t) # 0.

(2)

(3)
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Theorem 2
(H) (i) If for any b, 0 £ b < 00, f (x, t) satisfies

0 vs ”;Qs t)” < ¢ (v for [lxff < b

and uniformly in t > tys

(ii) f (b) is a continuous function of b;

(iii)bfoo //_f_(O,t)//pdt < o, p € [1,2];
to

(iv) conditions on A and f given in Theorem 1 are valid;

(C) then every solution of (1) satisfies x(t) — 0 as t —» o00.

Special Case

Let £ = F(x) + e(t) where F and € are continuous vector-valued functions.
Hypotheses (i) is satisfied if // e // is finitely bounded for all

sufficiently large t, and (iii) is satisfied if

oo p
] "E(_Q)+§(t)‘dt < oo
to
The result in the following Lemma is required for the determination of V in the
proof of Theorem 1.
Lemma
(H) (i) If g (x, t) is a continuous real n-vector, with a continuous Jacobian
matrix G;
(ii) N is a finite constant, — oo < N < oo ;

(iii) the characteristic roots of 1/2 (G + . (—;T) are all less than or

equal to N, uniformly in x and for t > tos
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(C) then for any x and h, we have

' 2
[a(§+h, 6 - g &, t)] o< N R
T
In the proof of Theorem 1, we consider the following positive definite form:

V() = xp A x,

where x(t) is a solution of (1). Since A is symmetric and positive definite, we

have

2 ! 2
|zl > v > < [[x] |
where o« > O and <! >0 are the greatest and least
characteristic roots of A. From the above Lemma and the hypotheses of Theorem 1,

V is bounded from above in the following fashion:

1 ’ o o 'd‘ 2

VE— 'V + ooy ”;(g,t)” VI/,
where C, depends on A and is positive. By considering V and 6, we can derive
equation (2).

The outline of the proof of Theorem 2 is as follows: The V-function
of (5) is used; show that ’ V(T) dt = 0(1) as t —»00 ;
| to

since V 2 0, then V(t) must approach zero as t — o 00; since

2 1 2
x| V() > x //?5” , then X —» 0 as t — 00.

Examplé 5, [6]

In this paper Ezeilo considers the equation

x + f(x, x) X + g(x) + h(x) 0.

He proved asymptotic stability in the large for the trivial solution, x = O, by

assuming:

(1) the generalized Routh-Hurwitz conditions are satisfied;
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(2) sufficient conditions are satisfied such that the candidate for the Liapunov function
is radially unbounded in the phase plane. (Because we have not seen this paper

[6] » the above information is all that we can report.)

Example 6, [7] Bellman's Vector Lyapunov Functions

The following discussion is an outline of Bellman's paper

on Vector Lyapunov Functions.

Bellman states that the second method of Liapunov depends upon the fact
that a function satisfying the scalar inequality

du < Ku, w©0) =c¢
dt

is majorized by the solution of the equation

dv = Rv, v() = c.
dt

Bellman says that in some cases it might be more convenient to use a vector

‘Liapunov function rather than a scalar function. If it is, then a vector analogue

of the above majorization relation should exist. It has been proved that this

analogue does exist.

We first consider a lemma for nomnegative matrices. Let A be a
At |
constant matrix and € be the corresponding matrix exponential. It is
At
known that € is the solution of the matrix equation

d8 = A ¥, X(0) =1,
dt
At
where E_ 1s a square matrix. For the elements of € to be nonnegative

it is necessary and sufficient that Qij > o’i 74 i
Lemma

AN
I£Qsy > 0, i # , then

dx < A x, x(0) =

dt

C, x (N - vector) ,
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implies x < y where

¥ = Ay, yoO) = ¢

——

dt
(Here x < y means component -by -component majorization.)

As an application of this lemma, let the two scalar functions, u and v,

of t satisfy the inequalities
0 £U 2K, 0 £ v £ Ky, (1

and the differential equations

u = - 3111.1 + a12V + blu v, u(O) = Cl’
v = azlu - azpv + bau v, v(0) = cp, (2)
> >
where aij > 0, bl,b2 2 0, cl’c2 >0 .  From

Poincare-Liapunov Theory we have local asymptotic stability if the characteristic

roots of |
T an 212

A = A

B a1 Ta22 )
have negative real parts and C, and C, are sufficiently small. Using the
above Lemma, we can obtain a nonlocal result. From (1) and (2) we have

-

u & a;qu + a,v + b11(2u , @

v £ asu - agv + bzklv;

and the solutions of (4) are majorized by the solutions of
WE-apw ot oajp o+ bRy W, w(0) = G ’

(5)

2

ajpw -ag2 & + boKiz, 7(0) = Cos
that is, 0 € u £ w and 0 ¢ v < Z . The solutions of (5) approach zero

as t —« o00 iIf

-a;p t bk, a9

ayy “ay; + byKy
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- is a stable matrix. Therefore the Lemma implies that the solutions of (2)' approach zero
as t ——= oo, as long as (1) is satisfied. This procedure can be generalized to
higher order systems.

We now consider the application of the Lemma to generating Liapunov functions.

Consider the system:

-
?—( =

A x + 3By +g(y,x0) =2,
. (6)
Yy = ¢ x+ Dy + h(x 9,30 =>b,
where x and y are m- and n-vectors, respectively and matrices A, B, C, D are constant
and--have’ appioprtate dimensions. We now form two Liapunov functions
U = X% R x, v =98 y, ‘ - > (7

where R and S are positive definite matrices. We assume that the bounds on X and y
are known; thus, the constants corresponding to g and h in (6) and analogous to the

K; and Ky in (5) can be determined. Therefore, a majorized linear system corresponding
to (6) can be obtained. Forming the vector Liapunov function, [u, v} . and making

use of system (6) and its corresponding majorized system, we can form relationships
for [u, v] which are similar to (4) and (5). From the "majorized" system for the
vector Liapunov function, [u, v] » a set of sufficient conditions for the stability

of th

[0
]
[
[l
[
n
<]
-
[+
T
[=N
O
=]
o]
Fh
”~~
()
A
§
o
[0
[*]
o
T
]
[
=}
®
(W

Example 7, [8] Leighton's Second-Order Equation

In this example we consider the equation
X = r(x, %) (1)
where r(x, y) is of class Cl, continuous first partial derivatives, in a neighborhood

R of (0, 0) and where r(0, 0) = 0. Equation (1) will be called regular in R

if ’Qrgo,oz ?l_ 0. Associated with (1) is the system
Qy

x = f£(x, y) (2)
Qfgx,zz
y = rlxf(x,y)]- £(x,y) a x

@ f(x,y) )
ay
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1
-where f(x, y) is of class C* in R, £(0, 0) = O, :9fgo,og 7& 0 . -
g 3y

The critical points,:or equilibrium solutions, of (2) are the solutions
of the equations
f(x, y) = 0, r(x, 0) = 0. 3)
From (3) we see that the abscissas of the critical points of (2) are invariant
under the various choices of f while the ordinates are not. We note that in

most cases f(x, y) can be taken as y, and thus system (2) becomes

x =y
. (4)
y = x(x,y).
Further we suppose that r(x, y) = O only intersects the x - axis, in R, at the
origin. Therefore, (0, 0) is an isolated critical point of (4) whose stability
we wish to study.
In the following lemmas and theorems, an "LCL" function is a function, V,
of x and y which determines the stability or in-stability of an isolated critical
point of (4) by the theorems of Liapunov, Chetaev and LaSalle, as given in [9]°
Lemma
"If (1) is regular, the function V defined by
x
2
2V = y& -2 r(x, 0) dx (5)
o

1s an LCL function for the system (4) in the neighborhood of (0, 0)."
(The time derivative of (5) with reference to (4) is given by the formula:
’ 6 =y [r(x, y) - r(x, 0)}).
The Eiégi of this Lemma will not be repeated here. The summary of

Leighton's discussion of the regular system (4) is stated in Theorem 1.
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Theorem 1
"If (1) is regular, and if (0, 0) is an isolated. critical point of (4),
this critical point is asymptotically stable if QJ{QO,O} < 0
and if xr(x, 0) < 0, =x 7& 0 . C)Izl all other regular
cases, (0, 0) is unstable."
Note

LCL functions for system (2) can be written in the form

X

2V = fa(x, y) - 2 / r(x, 0) dx. (6)
o

The time derivative of V along the trajectories of (2) is given by

Vo= £(x, y) {r [x,£(x, y)J - r (x, 0)} . 7
It is possible that the V in (6) may be mofe useful and tractable than that
provided by f(x, y) =y, but to find that optimum f(x, y) is a difficult

task.

Special Cases

(1) 1In Van der Pol's equation

'x'=e(1-x2){;-x, €>0, (8)

we observe that

. 2. .
r(x, x) = €(1 - x) x -x,
and

dr = €(1-x2), r(x, 0) = - x,

9

Me

Thus, an equivalent system is

He

=Yy
e -x) y-x, (9

<.
]
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where (0, 0) is an isolated critical point. Since Qrgo, Q) =€ >0

Qy
then, by Theorem 1, (9) is unstable at (0, 0).

3
If we now consider € < 0 ; and if we let f(x, y) =y -e(x /3 - X),

then system (8) becomes

.

X

y - e(x3/3-x)
y = - x.

Leighton found that a region of asymptotic stability for system (10) is the

interior of x2 + y2 = 3; that is, the region is defined by

2
x2 +Z§ + e(x::/3 - x)} < 3
where x and x are taken as independent variables and € < 0 is a parameter
of the system of regions in (11).

(2) Lienard's equation is given as

X=-£fx x - g,
where

r(x, x) = - £(x) x - g(x),

r(x, 0) = - g(x),

ar(x,x) = - £(x).

9 %

An equivalent system is

X =Y,

y = -y £(x) - g(x).

If we assume that f and g belong to Cl, g(0) =0, £f(x) > 0, and that

xg(x) > O for x 74 0, then the origin is asymptotically stable by Theorem 1.

We are, of course, assuming (0, O) is the only critical point of (13).

The case 3r§0,0) = 0 is considered in the following theorem,

Qay
theorem 2.

(10

(11

(12

(13
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Theorem 2
"Let x = r(x, x) be such that r is of class C1 in some neighborhood
N of (0, 0). Let N1 be the neighborhood N with (0, 0) deleted, and suppose

(0, 0) is an isolated critical point of the system

X =y
y = r(x,y).
. o 3 1
Ifdr > 0 in N, the origin is unstable. If dr < 0 in N,
Jy ay

the origin is stable if =xr(x, 0) < O for all x in N1 . This stability is

1
asymptotic if dr ¢ O0in N . If dr takes on both positive and
Ay ay

negative values in every neighborhood of (0, 0), then (0, 0) may be either

stable or unstable.™

Examples of the Last Conclusion in Theorem 2

Let us consider x = x x + x. The corresponding first order system is

Xx =y
(14)
y = xy + x,
where r(x, y) = xy + xand dr = x. Since the linearized system corresponding
2y
to (14) has a positive characteristic root, system (14) is unstable at (0, 0).
The system x = x x - X, whose equivalent system is
X =y
(15)
.y = xy -x
23 . _ .2 2
has a dr = -~ x. The LCL function, (5), is 2V =y~ + x ,

2y
where V = xy~. Thus, we look for another V. Leighton's candidate for V is

given by

2V=x2-2£y+108(1"}')} > 0
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for sufficiently small y's. The time derivative of V is V T 0. Thus, (0, 0)

is stable. But in bot_h- of the abov'e. examples, dr took on both positive and negative

ay
values in the meighborhoed of. (0, :0).- o
Regions of Asymptotic Stability
Let us define N as the nelghborhood of (0 0) such that)rgx, y) < ©

ay
and xr(x, 0) < O for (x, y) in N. Next let Kl be defined by

SRS B

Ciitese su  Kyo= L.ULB. {_ / r (x, O)dx}
. PREEIF I EREY % i % ( 0

iy X
and define Ky and K, as
‘ ;{ RO A L o
Ko = L.U.b. {-2 j r(x, 0) dx} » and K, = min(Ky, Kjp).
x > 0 o o . _
X € N :
Then the region defined by ¢ .« .. - : T
X
y - 2/ r(x, 0) dx < K, (16)
o o

s {1 RENRE NI T R I L FRE
1s a region of asymptotic stability of (0, 0).
T T TS I P

Example

LX) . 2 :
Consider x + ax + 2bx +3x =0, a, b > 0. 1In this case,

2

r(x, y) = - ay - 2bx - 3x°. The set N is all points (x, y) for which

X > -2b; and K, =8 b3/27 +. . Thus, a region of asymptotic
3 , W )
stability is defined by, . . .

y + 2bx + 2x < 8b ’

where y = x.
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Example 8, [8] Leighton's System of Two First-Order Equations

Consider the system

x = £(x, y),
. (L
y =g(x, y),

where f is of class C2 and g is of class C1 in some neighborhood N of (0, 0).

We also assume that £(0, 0) = g(0, O) = 0 and that the Jacobian of f and g
is nonzero at (0, 0). This insures that (0, 0) is an isolated critical point.

Further, assume that not both 9 £(0,0) and _2£(0,0) are zero;
X QY
say, 3 £(0,0) :# 0 . In order to determine an LCL function of (1) we
3y
must determine r(x, i), which is consistent with the above conditions placed

on f and g. First solve for y in the equation x = f(x, y); that is, v = h(x, x).

Then, the resultant r is

glx, hx, )] — =z ax

r(x, %) = 2 h(x. 3 ' 2)
2%

This r satisfies the hypotheses of Theorem 1 in Example 7. Thus, the LCL

function is given by

Vix, ¥) = X° -2 f r (x, 0) dx. (3)
(o]

Special Case

Consider the system

.
N

The Jacobian of f and g is
J(f, 8) =-2 # 0 at (0, 0)
and df =1 at (0, 0); that is, (0, 0) is an isolated critical point. Furthermore,

Ay

we have
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y = h(x, ﬁ) = x + 2x,

x (-2- / 1+ X2 ) -2x / 1+ x2",

dr =-2- /1+x* , dr(0,0 =-3,
PR 2 x

r (x,0)

r(x, x)

- 2x 1 + x2

Therefore, an LCL function is, by Theorem 1 in Example 7,

X
% + 4J/\ x /1 +x>  dx,
[e]
V=-22x-92 @ + /J1+x) .

Thus, the origin is asymptotically stable.

<
]

where

I

Example 9, [8] Leighton's Third Order Example

We consider the differential equation
X+ YR ¥ + 0(x,%) = o0, (1)

and the associated system

X =y

y = Z

Z = -z Y&y -0y , (2)
where Q (0, 0) = 0, and ‘)L and Q are of class C1 near (0, 0).

Furthermore, (0, 0) is assumed to be an isolated critical point of (2).
To study the stability of (0, 0), Leighton considers the following Liapunov
function:
y L X
2V=22+ Zf O(x, y) dy + 2« vy 7 +/ S (x, 0) dx + (3)

o o

y
+f y Ylx, y) dy ,

(o]
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where o is a constant to be chosen later. The time derivative of V with

respect to (2) is

y
. 2
v=2{°i-}b(x,y)} + y*i 1 90, )+
2o ax (4)
y
+°§{y dU(x, v) _98(x, v) } dy
QX ay
The following lemma is a well known result, given in [9] , but we will repeat
it in the context of the above problem.
Lemma
"If there exist a constant o such that V, in (3), is positive definite
in a neighborhood of (0, 0, 0) while V, in (4), is negative semi-definite in
X, ¥, = and such that either V = 0 or V # 0 along every nontrivial solution
of (2), then the origin is locally stable. If v # 0, the origin is locally
2z 2 2
asymptotically stable. Finally, if V ———» o0 as x + 'y + z‘ —> 00

1s satisfied, the origin is completely stable."
In discussing V and V in the light of the above lemma, Leighton talks

about a condition PH. His condition PH is: "Condition PH is satisfied if in

a neighborhood of the origin ')L(x, ¥y) > %, V is locally positive definite ,
Y-l J(x, y) £ 0, where J is the integral in (4), and if V does not vanish
along the nontrivial solutions of the system in this neighborhood of (0, 0, 0)."

The results of Leighton's investigation of (2) are given in the following theorem.

Theorem 1

1 2 2
"If ')Land © are of class C and d ¥ s g ® are continuous
axl ax 2
in a neighborhood of the origin, if ©(0, 0) = 0,%(0, 0) > =<,

;3%2;_0), >0, ’99%0,0) >0 L, ifY(x, y) > ¥ (0, 0,
y
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if condition PH holds, and if

20 V) 4 o £y A¥(x, v) _ 26(x, ) } £L0.
ax a x Ay

near (0, O, 0), then the origin is an asymptotically stable critical point of

system (2)."

Special Cases

(1) When ”% = f(y) and ® = ay + bx, we have the example given in [9_], p. 71

Equation (3) becomes

V=>b xz' + ay?"+%2'+ 2b yz + 2bxy + 2b vif(y) dy,

a a avo
which is the same as given in [9] The conditions of stability as given by

Theorem 1 are a > O, b > 0, X= b » f(y) > b
a a
(2) Consider the differential equation

soe

X b 3% 4+ 2% 4 i

]
o

whose corresponding state variable form is

x =y

y = 2
. 3
Z =- 3% -2y -x.

The characteristic roots of the linearized system, about (0, 0, 0), are

0, -1, -2. Thus, the local stability of (0, O, 0) can not be determined in

this manner. Applying Leighton's theorem we have:
3
¥x,y) =3, Ox,9) =2y + x

2 2 3
V=% + 6yZ + 1ly +2xy+§x4,

2
where o = (0, 0) Y
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. 2 2
The time derivative of V is V = - 3y (2 - x). Thus, V is positive definite
for x < 3/2 and V is negative semi-definite; therefore, the origin is

locally asymptotically stable.

(3) 1f 75 =aand O = by + cx, we have a linear system. Leighton's
Theorem indicates asymptotic stability of the origin if a > 0, b > 0,
€ > 0and ab > ¢ hold. When a > 0,b > O0,c¢c > 0 and ab < c, and
taking & = ¢/6 , Leighton's Theorem indicates an unstable origin. This is

consistent with linear theory.

Example 10, Bﬂ Leighton's System of Second Order Equations.

Consider the system of differential equations

LX4 b4 .

X; =7r: (X9, ov. , 3 X1y see 5 X )
i i %1 %n 1 “n
(1)
=r; &, %),
where i =1, 2, ... , n,; and r (%, X) vanish at X =x =0 and are of Class cl
in some 2n-dimensional neighborhood N of the origin. Let N' demote the
neighborhood N with the origin deleted. For convenience let
Ri(g) = R (xl, o 5 Xp) = Ty (x; 0)
and denote by N, the set of points (x 5 0) in N. We suppose that the
Jacobian
Jl = P (rl, ...., ™) 0 (2)
Q(X]_, edene Xn)
at the origin, and thus in the neighborhood N. Therefore, from (2) we have
that the origin is an isolated critical point of the system
X = Vi
3)
vi =ri x3 9,

where i =1, 2, ... , n; and (3) is the system associated with (1).
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Next, we introduce the line integral
X
I(x) = Ri (x) dxg
(i summed, 1 to n), (&)

kel

and we assume that

dri = drj
PRSY

P Xy (5
in N. Thus, I(x) is independent of path in N,. The results of the stability
analysis of system (3) are summarized in the following theorem.
Theorem
"If the function I(x) is positive definite and if the Jacobian
1Q(r1, « o« 5Tp)
T2 G - oo %) (6)
evaluated at g = 0 is the determinant of a negative definite quadratic form,
then the function
n (7
2V = Eg% yi ¥y — 21 (»)

is a Liapunov function for the system (3), and the origin is a stable critical
point of this system. (In fact ysing LaSalle's results, [9] , the origin is
asymptotically stable.)"
Note

Computing é along the trajectories of system (3) results in the following

expression:

vV o= Yi {rj_@; ¥ -y (x5 Q)}- (8)

n
i=1
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Example 11, 8 Leighton's Exact Equations of First Order

Consider the system defined by

g = ri(xps Xps een . X)) = 1300, (1)
1
where the rj are of class C in a neighborhood N of x =0, and the point O

1s an isolated equilibrium point of (1). Further, we assume that in N

‘Q ri = -3 rd .
ij Qxi (2)

Because of (2), the following line integral is independent of path:

p:4
V = ry ) dxi (i summed, 1 to n). (3)
o
If V is computed along the path from (0, O, ... » 0) to (x1, 0, ... , O)
to ... to (xq, X3, ... , X;), then we can easily see that
. n
V=3 1 ® ri x . (4)
i=1

Thus, V is positive definite in N. If V is negative definite in N, the origin
1s asymptotically stable. In all other cases, by Liapunov's instability

theorem, the origin is unstable.

Special Case

Consider the system

X

ax + by,

§ bx + cy,
where we assume that the constants a, b, ¢ satisfy the conditions a + ¢ < O,

2

ac - b < 0. Thus, the V-function becomes

X X

fe]
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X

1]

(ax) dx + (bx + cy) dy ,

2]
{ax2 + 2bxy + cy2} s

vV = (ax + by)2 + (bx + cy)2 .

N

where

Therefore, O is asymptotically stable for the conditions satisfied by a, b, c.

Example 12, [10] Skidmore's Fourth Order Case

In this example we consider the stability and instability of an isolated

equilibrium point of a fourth-order autonomous system of the form

x =y
y = 2
2 = w
v = —wk(x,y,® - O(x, y, &),

associated with the differential equation
X+ ¥ (x, x, )%+ Q(x, X, %) = O.
We restrict ) and O in the following ways: (0, 0, 0) = O,
'}L and @ are of class 02 near the origin. We also suppose that the origin
is an isolated equilibrium point of the system (1).

In the following discussion, the subscript '"0'" denotes the quantity being

evaluated at the origin and ¢ is a constant that will be assigned a particu-

lar value at a later time. In the analysis of the stability of the equilibrium

solution the Liapunov function used by Skidmore is

(1)

(2]
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2
960 _ 960 (y* + 2 ¥ y2 +
{"7‘0 dz BX% 7§

2V =

X
+ 2°<7éof ©(x, 0, 0) dx + 2x¥_yw +
(o)

(3

2 y
+ 2 ()‘0-"0/ ¥ (x, y,2) dz + 2)@] S, y, 00 dy +
o o

=
+2yozw+ zf O(x, y,2) dz + w 2

o
The time derivative of V along the trajectories of (1) is given by:

5 - é’ /;qae(x Y. Q) 9&(){, y, 0) 'g dy‘} +

J

(o}

a2 ay

2 2
+Z "’(Vo + 1 f[)‘ do(x, v, 2) _ d6(x, v, 2) +HX - K) Ahx, v,2) Jd=
Z avy

{wx y.2) - /o} + @)

7 ) 2} ax
=
- X —3_20_ + _l_f o d6(x, vy, &) _d8(x, v, +
v Jz = Lo dz ax
+ (X -%) 2 9K, y,-z-)} de}
9 X

The author uses the usual theorems relating the properties of the V-function
with the local stability properties of the origin.
Some of the restrictions which are placed on @ and '}Lsuch that V is

locally positive definite in a neighborhood of the origin are



’)Go >O ,3@0 >0 ,‘2@0 >0,-}Lo >0,

ax avy dz
90 oL — d6 >0, (5)
Az 7L° ay ?

2 2 V
o d8o Py QQQ o,
_55917L°—3x7‘€ 9}’)2 4

where <o is taken to be

350 46
=] 9% oy

We note in passing that the system (1) has equilibrium points when
y=z=w=0, & (x, 0, 0) = 0. These points are also critical points of
the Liapunov function in equation (3). But the author in [10] only is concerned
with the equilibrium point at the origin.

From equation (4) we see that —G is a quadratic form infy, z, waith

variable coefficients which are functions of y, 2z, wj that is,

V= [y,% , w] A % ; (6)
w

where the elements of A are the terms in the brackets in equation (4). The

form -V will be positive semidefinite when the principal minors M;, My, Mj

of matrix A satisfy the inequalities:
M > O, M > 0,M3 >0 )
in a neighborhood of the origin. Therefore, the following stability results

are obtained for the system in (1) based upon the inequalities in (7).

Theorem 1
H) If the following conditions hold in a neighborhood of the origin:

(i) }L (x, vy, z) and O (x, y, z) are of class Cz;
(ii) S 0, 0,0 = 0
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(iii) conditioms in (5) and (7) hold;
(iv) X‘I # 0 along every nontrivial solution of (1),
C) then the origin of (1) is an asymptotically stable equilibrium point.
Skidmore studied the instability of the origin by employing the following
theorem of Krasovskii, [11, pP. 69] . -
Theorem 2 )
H) If there exists a bounded neighborhood N of the origi§n, a region Nj con-
tained in N, and a scalar function V(x) such that
(i) V(x) is.of class ,Cl‘.in N3
(ii) O belongs to the boundary of Ni; the boundaries of N and Nj have
points in common;
(1ii) V() > 0 for x in N.l.; V(x) = 0 for x's belonging to the boundary

of N1 but not to the boundary of N;

(Iv) V(x) > 0 for x belonging to N1;

) the set R, which contains all the x's in Nl for which \;’(}5) =0,
does not contain any positive invariant set of the system
x=£®, £0) = 0;

C) then the equilibrium point at O is unstable. (x is an n-vector in this theorem.)
Skidmore applied Theorems 1 and 2 to several special cases. These special

cases will now be presented as Examples 13, 14, 15, 16 and 17.

Example 13, [10] Fourth-Order Linear System

Consider the linear system defined by

X + a1'£'+ az'i + ag % + a, x = 0,

where the associated system is

X =y
y = z
z = w

w = - ajw - azz - a3y - 34X.
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The conditions given in (5) in Example 12 are equivalent to the Routh-Hurwitz

conditions:
Al = 81 > 0
A2 = al 32 - 33 > 4)
2 2 ,
' A3 - al 82 3.3 - . a3 - .al 84' > 0,
A4 = a]. 3.4 A3 > 0. . 1 ‘ » M‘T. ...'.',"
If o = ak/aj3 , then V and V as defined in Example 12 verify that

the origin is completely stable.

For aj. > 0 y» ~ -~ (i1=1,2, 3, 4) and Ay < O, we have that Aj < .

Let Nj in Theorem 2, in Example 12, be the points (x, O, O, w). The V given
2

above is -{53/3552; , but the corresponding surface z = 0 contains no

invariant points of the linear system. Thus, from Krasovskii's Theorem, the

origin is unstable.

Therefore, for the linear case, Skidmore's results are consistent with

other methods of stability analysis.

Example 14, [ld] Fourth Order Analogue of an Example by Szego

The conditions in (5), in Example 12, are sufficient for V to be positive
definite locally but are not necessary as can be seen in the following example:
46X + % O+ 6x + 4x° = 0.

The state variable notation for this system is given as

X =y .
y = £

2 = w

w = -6w -11% - 6y - 4x3.
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The linear approximation of this system about the origin yields the character-
istic roots 0, -1, -2, -3. Therefore, the asymptotic stability of the origin
can not be predicted by the linear approximation and thus Liapunov's second

method is required. In this particular example, the expression for g@o
ax

is zero and not greater than zero as required by Skidmore's conditions. But

if X= 4/3 , the V-function in Example 12 becomes

2V = 16x4 + 124y2 +3922 + w2 + 48x3y + 8x32- +

+ 108yz 4+ léeyw + 12zw =

]

2 3 2 3
(w +62 + 8y) + 1 3%+ 4x + 6y) + 16 3y + x
3 3

+ 16 xz" (3-2x2);
3

so that V is positive definite when x2 < 3/2. The time derivative of

V is given by

Vo=3 Py-22)2 - 332 % 2x? - 16y,

where -V is positive semidefinite when x2 < Y160 - 12 o
Hence, the origin is locally asymptotically stable, even though not all of
the conditions in (5) in Example 12 are satisfied,

Skidmore investigated the region of asymptotic stability for this system

by using a theorem due to Leighton [12] .

Theorem

"Suppose the system x = £(x) has an isolated equilibrium point at the

2
origin, and suppose further that there exists a function V(x) of class C

2
) +
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in E, which is lqcally positive definite around x = 0, with V(Q), with V(Q) = O.
Suppose further that V has at most a finite number of critical points, and that
6’ £ 0 in Ep, and that the origin is the only point in the invariant set
for which V = 0. It follows that O is an asymptotically stable equilibrium
point of x = £(x) and regions of asymptotic stability of O are bounded by
surfaces defined by V(x)= a, for each a on an interval 0 < a < K.

The number K is a positive critical bbint if V, if V has at least two critical

V (x 4
points; otherwise K = Lim infg (')} .
X —» 00

In the example considered here the critical points of V are P,(0, 0, 0, 0),
P 1, -1/3,-2/3,20/3 ), Py (-1, 1/3, 2/3, -20/3 ) , and the corresponding
critical values are 2V = 0 , 16/3, 16/3. Thus, the doméin of asymptotic stability
of the origin is bounded by the surface V = 8/3, where V is defined in the above
discussion. But in this particular case 6 £ O further restricts the region,
as mentioned previously.

In a similar analysis and by using Krasovskii's Theorem, Skidmore proves that
the origin of the following system is unstable:

X+ 6% + 11X + 6% - 4x3 = oO.

Example 15, [10] Skidmore's Theory Applied to Cartwright's Example

In reference [13], Cartwright studied the asymptotic stability of the

origin for:the system

x=y, ¥y =&, = w

w=-2a w-a#%-a3y - f(x), (1)

associated with the differential equation

X + a;’x + apx + a3 x + f(x) = 0

where aj, aj, aj are constants and £(0) = 0. This equation is a




|
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special case of Skidmore's equation, Example 12, where }4 = a; and
6 = ay £ + az y + f(x).

Cartwright derived the Liapunov function given by

n

; 2

2V, = ap”~ a32W +ayz + (ap - a3) YA)Z +
. ,

1

2 . 2 ' )

- - 2 2 ;_
t a3 aliz"" aly + a3y f(X)é -+ a32'a1a2a3 -a3 -aj; £ (x) 0y +

ag -
fx ( 2 2 ' 9
+ 23.1 J f (X) 7318233 - 3-3 - al f (X)(g dx ’
(o]

where
2

y ) : 2 2 ! " g
-V, = a1a3t ajazas - az - a; f (x) + % alyf (X)' y

The conclusions drawn by Cartwright from V. and V. concerning the stability

of O are as follows. For every Vo > O, there is a domain Dy of asymptotic

stability of O given by Ve (%, 5, z, w) < V, , provided the following
conditions hold in Dy

(@ £'(x) > 0,a > 0,a, > 0,a3 > O0;

(b) aj a2.- a3 > O0;

(@ ajapay- a3 - af £ > 4 > o

(d) £" (x) continuous;

@ [ @]y < ;

.

(f)J £ () dx — s oo s [x|— oo
o .

Skidmore observed that if £f" (x) # 0, then "f" continuous' fails,
in general, to hold throughout E4; so that complete asymptotic stability

of O can not be determined from V. in equation (2). But if Skidmore's

2

(2)
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V is used, one can conclude that O is completely stable under appropriate
conditions.
First, Skidmore considers local asymptotic stability. The V given in

Example 12 and the value of « are given by

= £'(0)/a3,

X
22 e fe - o fax ¢
a3 (o] '
£'(0 2 2 2
+ a 3 ala2a3 - 3.3 - al £ (0) y +

1 2 2 2
+ aja, {%1a2a3 - a3 - a f! (O)} z +

al 2
+ Zw + a;z + a3 £' (0) y} +ala3{y + az +a;

where

-v=ﬁ%wm-f'uf3y w8 @ - iy

1 2 2 2
+ a3 ajajsaz - aj - ajy f'(O)z 2z .

The conditions (5) and (7) in Example 12 become

(a)" f'(O) ” 0, al 7 o, 3-2 > 0, 33 > 03

(b)' aja;, - a3 > O0;

(c)' A, = 332 -a12 £' (0) >  0;

@' f£' @ > f' > f£'(0) - 431 Ag;

Thus V and -6 are locally positive definite and positive semidefinite,

respectively. Also, since the surfaces x = z = 0, y = 2z = 0 do not contain
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invariant points of the system, the origin is locally asymptotically stable.
(It can be shown that locally the conditions (d)' (@' are more generél
than Cartwright's conditions.)

The origin of the system in (1) can be shown .to be completely asymptot-
ically stable if conditions (a)' ___ (d)'" hold and if, in addition,

(e)' the only critical point of V is 0;

(£) Lim iinf V(ﬁ)j = + 00, where /[5 ﬁ = '/x% + . ...+ xg
%} — s oo ’

hold. ‘These conditions (e)' and (f)' have been weakened in |12].

Example 16, [10] §peciél Case of Example 15

In this particular example, Skidmore's V-function yields complete asymptotic
stability of the origin, whereas Cartwright's V-function does not. The
equation we consider is
x + % + 3% + x + arctan x = 0,

and the corresponding system ‘is

X = v,y = z, 2 =W,
W=-w-3z - y - arctan x.
Here, ay =1, a, = 3, ag = 1, and £(x) = arctan x, yhe;e
- T/2 < arctan x < /2 . Therefore conditions (a)' .;___ @'

in Example 15 are satisfied for all x. The V and ﬁ functions of Skidmore are

2V =2 / 1 - 1 éarc tan x dx + y2 ﬁ-iz +
1‘=‘X_/ '

2 2
* (y+=+w) + (arctan x + y + 2) ,

and
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-V = 2:

1 + x2

- 2 - 2
1, X 37 +4 ) y2 |
4{”3 1+x;2 {1+ }{1‘?‘){2'

The V given above has its only critical point at the origin and because

)
&y“i-)tl- 1 %y-z-i-}
2

-

X

1 - 1 arctan x dx ——5>» 00 as jx[—)oo_,
1+ %2

o

conditions (e)' and (f)' are satisfied. Thus, the origin is completely as

asymptotically stable. Cartwright's conditions will not yield complete

asymptotic stability of the origin.

Example 17, [10] Skidmore's Results Applied to Ezeilo's Example

In reference [5], Ezeilo considered the equation
X+ a;x + oayx + g(x) + a,x = 0,
with the corresponding system defined by
X =y, § =z, z=uw,
w o= - ajw - agrz - g(y) - azx.
This is a special case of Skidmore's fourth order differential equation
where}l=a1 and O = a)x + g(y) + a; %
Ezeilc showed that the origin is completely asymptotically stable if
the following conditions are satisfied:
(a) a; 7 0, a, > 0,3, > 0;
(b) g(0) =0, g(y)/y > a3 > 0@ # 0
(c) g'(y) continuous and g'(y) f; A3 for all y, where
2
a; a, ag - A3 az - a; a, > 0, and

Ay = a; ap az - a32 - a12 £' (0) > 03
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/ :
(d)-l:g (y)//y -gchscfl , for y 7': 0, where 0; 1is any

constant such that

2
5\ < 2a;, (ajazaz - a32 - ay” ay)
1 2
al] a 3
The conditions which must be satisfied in Skidmore's Theorem are

(a>' ala a2, 349 g' (O) > 0;

()" a; a, -g'0) > 0

@ aja8'(0) - 2, 1, - fe@ 5 o
@' gty - g © > o
© a2, 8'® - a a-g'@g ) > o
For K = a4/g'(0) , the Liapunov function
2V = E_al_a!f)xz + ra1a2a4 - a4-] y2 + 2a3 [7 g(y) dy +
g'(0) ifEFTET 3 jo

N 12 e
+ Lal + a; = aja, Z + w + 2a1a4 Xy <+ 3,4}{2
g' (0) 5

+{2a1234zy§ + 2 g(y)£+{231a4} yw +v23|§w,

g'(0) g' ()
where
-V = aia, g(y)
g"(0) y . 8 © ¢ y2
+ 1 ) ajay g'(0) - a; a;- g'(0)g' (& .
g'(0) y

Under conditions (a)' (c)', V is positive definite and conditions (d)', (e)'

imply that -V is positive semidefinite in the neighborhood of the origin.
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Further, the surface y = z = 0, where 9 = 0, contains no invariant points
of the system. The conclusion is that the origin is locally asymptotically
stable. If we assume that Ezeilo's conditions (a) ___ (d) hold and take
=4 ={§4% in the above V-function of Skidmore, then this V = a; (Vg),

a :
Vg beiig Ezeilo's V-function. Therefore, the origin can be shown to bé

completely asymptotically stable.

The next set of examples are from a summary of third and fourth order equations

collected by G. Sansone in reference [14J. Some of the references given by
Sansone were unavailable (as far as we are concerned), so that some of the dis-

cussion which follows will be brief.

Example 18, [15] Simanov's Example

The system is defined by the following third order equation: -
X + £(x,x) X + bx + cx = 0,
where b and c are constants. The result of Simanov's work is:
the origin of this system is globally asymptotically stable if
(1) (0, 0) is an isolated equilibrium solution of the system;
(2) b > 0,c > 0;
(3) f£(x, X) >c/b, for all x, x ;

(4) x3£(x, 0 0, for all x, x.
29X

Example 19, [16] Krasovskii's Example

In reference [}6], Krasovskii gives necessary and sufficient conditions for the

asymptotic stability of the origin of the following system:

Xl = fl(xl) + alxz + b1X3 N
}.Cz = f2 (Xz) =+ 82}(2 + b2X3 )
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where ,fi(x)| < M(x) for sufficiently small lxl , assuming ajb; # O.

Example 20, [17, 18, 19) Tusov's Example

Tusov consider the third order system defined by

3
o= 2 agxg v £ (xp)
K=1
X2 = E: a2K XK R
. K=1
T
X - a
3 = 3K 2K,

where a; are real and f satisfies the usual existence and unicity conditions in
the whole space. Tusov derives the sufficient conditions for the origin to be
asymptotically stable. Furthermore these conditions of stability dictate that f

must satisfy the inequalities

«xf < x £(x)) <gxf

where « and @ are the extreme values of the parameter "a', such that on
replacing f(xi) by axy in the above system, the characteristic roots of the

corresponding linear system have negative real parts.

Example 21,[1, 20, 21, 22] Pliss's Examples

In reference[hO], Pliss considers the system defined by

ﬁ =5y - f(x) >
}.7=E-x,
P x,

where £(0) = 0, xf(x) > x> for x # 0. Pliss derives sufficient conditions for the

stability of the origin "in the large." He also derives sufficient conditions for:

the existence of periodic solutions.




where f is Lipschitzian, £(0) = 0, £(x)/x > x + bf(x)/x for x > O.

sufficient conditions under which this system is stable in the large.
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In reference [1] he considers the system

x =y - f(xX,
y = 2 - x,
Z = - ax - bf(x),

Furthermore, he proves that periodic solutions exist if

(1)

a > 0,0 £ b < 1l,a + b

ax

(2) hx £ £(x) -iﬁz if0 £ x

(3

where h > 1-b

% )\, X1, X

o

In reference [2}], Pliss gives necessary and sufficient conditions

ax

&

> 1;

Xl;

< f(x) - Il-b} < ) for x > %9,

a

in the large of the system

Ke
[

e
I

M-
1]

The conditions are

(1)
(2)
(3)

(4)

ab >c, b >0, c > 0, £(0)

xf(x) > 0 for x 75 0;

Lim

X
f(x) -
-00 f(s)ds‘ =

X —b

Lim

X —>»

~00

o

x
{- f(x) - J[ f(s) ds

(e]

<

]

- x7 are sufficiently small positive numbers.

- ax - f(x) ,

- bf(x) ,

c £(x).

00.

Pliss gives

for

stability
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Finally in reference [22], Pliss gives, without proof, many conditions under which
all the solutions of a nonlinear system of the form
X = A x + f(x) b, x(0) = ¢,
approach zero as t ———> 00. Here, x is a 3-dimensional vector, A is a constant

matrix, and £(x;) is a scalar function.

Example 22, f23] Vaisbord- Boundedness of Solution

In reference [23], Vaisbord considers the system

x = f11(x) + £, ,

<.
1

fr3(2) ,

2 = f31(x) -+ f32(y) + f33(£) .

The existence and continuity of the fij's are assumed and the following hypotheses
are satisfied:

1) Fi500) = 0 ;

J
(2) £/,(x) < o, ')l;?._tgoofil(x) = - oo (i=1,3);

() 1,00 < e, £93 (F) > 0, |f@)] < alz];

. 1 i
and when Lim 'f32 (y), < 00, Lim If32 | < oo,
Yy — 00 V—= -00
then 1lim f'3, (y) = o0, lim f'32 (y) = 0, respectively;
y —o00 y —»-00

(4) on the solution curves of
f31(x) + f32 ¥y = 0,

we have

0 < A < £, (y)/ £, ® 3
2

(5) ca/AN < 1
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(6) fé3 ) {- f§3 0) féz o) + fél(o) fi2 (0):} +
- £, © £, © {fil © - £ (o)} < 0.
Under these hypotheses the above system has a periodic solution; and all solutions

of the system are bounded in the large as t ——» oo0O.

An outline of the procedure followed by Vaisbord in his analysis is as follows:

(1) 1linearize the system about the origin, the linearized system being
E- £, @F + £, © 7
T B @85
§ £1, ) ¢ + £1,(0) ’)l + £3,00) §

(2) the characteristic roots of this linear system are such that one root has a

negative real part and two roots have positive real parts;

(3) by a fixed - point theorem the existence of a periodic solution is proved;

(4) from topological considerations the boundedness of the solutions is proved,

Example 23, [241 Ogurcov's Examples

Ogurcov studies the asymptotic stability in the large of the equilibrium solutions

corresponding to four different autonomous systems. Liapunov's second method was
used in the study, and what follows is a summary of the stability results.

A x + P&, %) %X + P& + fx) = 0

The stability results, which are sufficient conditions, are as follows:

X

y
(1) if F(x, y) = 2 X f(8) ds + f(x) y +f %(s) ds,
o _

(o]

where < is a positive constant and y = x, then F ——+ o0 as x>+ Y2 — 00

@) A = £0) =0, £x)/x > 0, ¥(x, y) 22
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(3) x 9%, y) £ 0;
ax
(4) 2Py - £'(x) > 0;
= 2
) 2xfMly - 2@ - ol {fx, ) - zoc;g > 0.
(B) X + ax -+ ?‘(x) X + bx = 0

The sufficient conditions for stability are:

() a >0,b >0, $#(x) > bla;

X s
(Z)f ds f {%(T:) - b/az dr ——— 00 a5 X —— 5 0O.
0 o

©) "5 + Z(x, % ¥ + cxX + bx + ax = 0

The values a, b, ¢ are constants. The sufficient conditions for stability are:

(1) a > 0,b > 0, ¥(y,2) > 0, wherey =x, 2= %;

(2) be Y(@y,2) - b2 - a2 H%(y,2) > 0;

(3 dy :

(D) 'x + dx + cX + #(x) + ax = 0

The stability conditions are:

(1) a, c, d are constants and a > 0,4 > 0
@ 4@ = o, g»fy > 0;
® e« pfy - Bt - a® 5 0.

Example 24, [25] Tabueva's Example

In reference [25], Tabueva derived conditions for the stability and existence of
a periodic solution for the system defined by

X + ax + bx + sinx = e(}),

where a and b are constants. The stability in this case is asymptotic stability.
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Example 25, [26, 27, 28, 29, 30, 31 Ezeilo's Examples

In the five papers, [26] to [30&, Ezeilo studies the following third order
nonautonomous system:
X + ax + bx + h(x) = p(t) ,
where a, b are positive constants. The findings of Ezeilo are:
(1) sufficient conditions for boundedness of solutions;
(2) when p(t) is a continuous periodic function of t with a least period T > O,
then sufficient conditions for the existence of periodic solutions with periods(nT))
n > 1 and n an integer, are given;
(3) sufficient conditions for the existence of at least one solution of the system
with period T.

In reference [ﬁi}, Ezeilo gives an existence theorem for a solution of

X + f(x, X) X + g(x) + h(x) = p(t) ,
where x, = x(0), y, = x(0), 2, = x(0), for t > O.
Example 26 [32] Pliss's Example

In reference [32), Pliss gives a generalization of the results of Ezeilo for

the system defined by

]

x + ax + bx + h(x) P(x,%,X,t).

G(y ’& ’.};)t) b

y + ay + $@) + y

Q(z,2,%,t) .

2 + g(Z) + 2 + az
In the case where P, G, Q are periodic with respect to t, Brouwer's fixed point
theorem is used to prove the existence of a periodic solution.

Example 27, [33, 34, 35, 36] Skackov's Work

The system which Skackov studied is defined by:

X = ax + b y + f(x, y,2) ,
y = ex + dy + g(x, y,2) ,
2 = h (X, y’}) 3
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where a, b, ¢, d are constants such that ad - bc 74 0, and where f, g, h are power
series with real coefficients beginning with terms of at least degree two. The
investigations conducted by Skatkov were as follows:

(1) the behavior of the integral curves,

(2) stability in the large of equilibrium solutioms,

(3) existence and character of the system's singular pointsj that is, the behavior
of the characteristic curves in the neighborhood of the singular points.
This completes the summary given by G. Sansone in reference [14])concerning

stability theory.

Example 28, [37, 38, 39, 40, 41] Duffin's Work

In reference [3{}, Duffin determines when a certai
differential equations has a unique asymptotic solution. That is, to determine
under what conditions will all the solutions of the system approach each other

falal -
o L

system under investigation is in the field of electrical vibrations in networks.

Definition 1

A linear network is a collection of linear inductors, linear resistors, and

linear capacitors arbitrarily interconnected.

Definition 2

A quasi-linear resistor is a conductor whose differential resistance lies between

positive limits,

The main theorem in reference [37] can be paraphrased in the following way:

"If in a linear network,the linear resistors are replaced by quasi-linear
resistors, then, as in the linear case, after sufficient time has elapsed

there is a unique relation between the impressed force and the response."
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is linear, the network equation is

where

E* I
1 :
j»n +
i 1=

Im e K
1]

Definition 3

v @

The system being considered is an n - degree of freedom system.

semi-definite matrices,

n-th order current vector,

- V() = V@ 1

where V¥ is the symmetric Jacobian matrix which satisfies
(1/a) y, R y £ 3, ¥* y £a y. R ¥,

for some positive constant“a?independent of the vectors y;, ¥5 » ¥

Main Theorem [37]

H) If (i) all solutions of (1) satisfy, § —» 0 as t ——» 00,

(i1) V is a quasi-linear replacement of R y,
(iii) for t >

0, the vectors g and € satisfy

Lag+Vv@+84g-==¢&,

(iv) g* 1is any other solution of (4),

) é and é? are continuous,
C) then
00 . .
,,g - g#” dt < oo

constant, symmetric, positive

n-th order electric charge vector,

n-th order electromotive force vector.

A continuous vector function V(y) is a quasi-linear replacement of R y provided

(2)

(3)

(4)

(5)

When the system

(1 |
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Let w = g - g*. Then, from (2) and (4) we obtain the following equation

LW+ V¥ +35 ¥ = 0. (6)
L
Premultiple (6) by ET,and use the symmetry properties of L and S to obtain

——

d {L’TL 0o+ WS g} =-2 W v &

dt )
Integrating (7) gives
t
_ L] » - L * -
EE& LW+ WS ﬂi% + A 2 J[ Wy Ve W odt .
Since L and S are positive semi-definite,
oo
. . (®)
We V¥ W dt < A/2.
o

Then from ihe properties of symmetric semi-positive matrices and the inequality

(8), we can prove that (5) is satisfied.

Notes About the Theorem

(1) This theorem says that é and é% approach each other in-the-mean, but

not necessarily pointwise.

(2) Ssince L and S are positive semi-definite and considering the equations (3) and

(7), we see that {_ﬁ'l‘ L ﬁ + Wp S E} is playing '"very nearly" the role of

a Liapunov function.

In reference[38], Duffin shows that a network of quasi-linear conductors
possesses a stable set of currents and proves that the stable set is unique. The
criteria which this set must satisfy are the conservation of electricity and the
single-valuedness of the electrical potential. In the proof of the statements,

Duffin uses an analogy between elastic and electric networks.
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In reference [3§], Duffin considers the quasi-linear properties of a certain
n~dimensional transformation, y = S (x). More precisely, he considers the
sufficient conditions to guarantee the existence of a unique inverse. (This trans-
formation is, of course, directly connected with his theory of electrical networks.)
In referenceEMﬂ, Duffin proves that a certain nonlinear system has one and
only one periodic solution. The nonlinear network is obtained from a linear network

by replacing linear resistors by quasi-linear resistors. The central mathematical

idea explored in reference Ekﬂis the treatment of the network equations as a trans-
formation between Hilbert spaces. That is, the network equations define a transfor-
mation from the '"Hilbert space of electric charge' to the "Hilbert space of
electromotive force'. Duffin specifies the sufficient conditions which must be
imposed on this nonlinear transformation in order that the inverse transformation
exists.
The theorem and proof concerning the existence of a unique periodic solution
for this nonlinear system in [40ﬂdepends on the above mathematical concepts and
is very similar to the work of reference [3i], which has already been discussed.
Combining the results of [37] and [40] we see that the network in equation (4)
can be specified such that all solutions must approach the unique periodic solution.
In reference [41] » Duffin considers networks consisting of tramsformers
and resistors, arbitrarily interconnected to a set of generators. The network
equations are first integrated with respect to time. The integrated equations then
are similar in form to the equations analyzed in [37] and [40]. In these equations
the permeability of the core plays the same role as the resistance in the previous
equations. Thus, Duffin again uses Liapunov - like arguments to analyze these

new equations.
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Example 29, [42] Jone's 2nd Order Equation

Jones considers a class of nonlinear second order differential equations which
has occurred in astrophysics, atomic physics and mechanics. Jones presents a set
of sufficient conditions which guarantees that no solution of the system has an
arbitrarily large positive zero. In the proof of his main theorem, Jones uses an

"amplitude variable" which is really a Liapunov function.(For this reason this

example is included in the report.)
The system is defined by the following equation:
n 2i-1
YO+ 2 H® oy = 0. (1)
i=1
All of the coefficients of (1) are assumed to be real-valued, bounded, and
Lebesgue - measurable functions of X, X 2 0., It can be proved that a solution
of (1) will be an absolutely continuous, real-valued function with an absolutely
continuous derivative satisfying the differential equation almost everywhere in

the sense of Carathéodory.

Theorem, [42]

H) If (i) f£,(x) has a positive lower bound for x > 0,
(1) £ (x) > 0, f% (x) <% Ofori=1, ..., n,

(iii) £'; (x) are Lebesgue - measurable,
(iv) n is a positive integer greater than 1,
L%

n 21 - 1
v) > £i(x) x dx < oo ,
o

i=1

C) tThen there is no solution, y(x), of (1) with arbitrarily large positive zeros.
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Qutline of the Proof

Jones defines an "amplitude variable" in the following way:

1
2

- h2 s 21 @
RGO = 2 D7+ T £ v,
i=1

where §(x) is a solution of (1). This amplitude variable is really a Liapunov

function; R(x) is positive for x > O and

n 2i
R'(x) = 2 £'() ¥ < 0. (3
i=1
From (2) and (3) we conclude that for any solution of (1), y'(x) remains
bounded as x ——— 00. The author then constructs a contradiction proof to

verify that the conclusion is valid. (The main vehicle in this proof was a

Liapunov function, R(x)).

Example 30, l@ﬂ _Utz's 2nd Order Equation

In reference Egﬂ , Utz considers various sets of sufficient conditions which
guarantee boundedness or asymptotic stability of solutions of 2nd order systems.

In theorem 5, Utz proves his results through the use of a Liapunov function. We will

now outline Utz's contribution as reported in [Eg .
The systems which are investigated have coefficients which are differentiable,

and qre such that x(t) = O is a solution of each system.

Definition 1

A solution, x(t), of the system is called oscillatory if it has positive maxima
and negative minima for arbitrarily large t.
In the first two theorems, the system being discussed is defined by:

x + f(x,x) + g(x) = O. (1)
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Theorem 1

(H) If (i) £(x, X) > O for x, x ,
(ii) x g(x) > 0 for all x 94 0,
X

(iii) g(x) dx ——» 00 as x ———>» o0 ,
o

(iv) x is a nonzero solution of (1), valid for all t > O ,
(C) then x is bounded and oscillatory as t —= 00, or x monotonically approaches

0 as t —p 00.

Theorem 2
(B) If (i) £(x, X) > 0, except at a discrete number of points,
(ii) g(x) is an odd function,
(iii) x is an oscillatory solution of (1),
(C) then the amplitudes of the oscillations of x are monotonically decreasing.
In the next three theorems, the following equation is considered:
X + f'(x) X + gx) = 0,

df/ax.

I

where f'(x)

Theorem 3
(H) If (i) xg(®) > O for all x # 0,
(ii) g(x)/x ———» o008 X —-p 00,
(iii) there exist constants b, B > O such that for all real x,
[£Gx) - b g(x)| £ B x|,
(iv) x is a nonzero solution of (2) fort > O ,
(C) then x is bounded and oscillatory, or x monotonically approaches zero as

t — oo0.

(2)
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Theorem 4

(H) If (i) there exists positive constants a and b such that b > a2 and

b + 4a° > a F(x) 2 Gx) 2> b > 0,
where F(x) = £(x)/x and G(x) = g(x)/x,
(ii) x is any nonzero solution of (2) valid for all large t,
(€) then x is bounded and oscillatory, or x monotonically approaches zero as

t —» 00.

Theorem 5
(H) If (i) xf(x) > O, xg(x) > O for all x # O,
(i1) g(x)/x - - 00 as x — oo,
(iii) x is any nonzero solution of (2) valid for all large t ,

(C) then x is oscillatory, or x monotonically tends to zero as t —— OO,

Notes about the Theorems

(1) The above theorems are independent of each other as we can show by example.

X

In equation (1) let f(x, x) = 1 and g(x) ==§——————;}° Then Theorem 1 is

x2 + 1

valid, but Theorems 3 and 4 do not apply. In equation (2), if f(x) = g(x) =
=9 x (exp [:XZJ + xz) and b = B = 1, then Theorem 3 applies but not
Theorems 1 and 4. 1In equation (2), if £(x) = 3x (exp [Exz] +1) ,
g(x) = 3x, and b = 3 and a = 3/2, then Theorem 4 applies but not Theorems 1 and 3.
In equation (2), if g(x) = x3 and f(x) = 3x (exp [—x%] + 1), then Theorem 5
applies, but not Theorems 1, 3, and 4.
(2) 1In the proofs of Theorems 1 through 4, non-Liapunov methods were employed;

but in the proof of Theorem 5, a Liapunov function was used.
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The system in equation (2) was rewritten in the following form:

x =y - £(x)

. (3)

y = - g(x) .
The choice for a Liapunov function was

t
. 2
vV(t) = 2 g(x) x dt + y
o
By the hypotheses of Theorem 5, V(t) is positive definite. The time derivative
of V(t) with respect to (3) is
\;(t) = - 2g(x) f(x) £ 0O
Also, from Theorem 5, V —» 00 as t —— 0O. Therefore, the conclusion of
Theorem 5 follows from Liapunov theory.
Example 31,[44, 45, 46, 471 Volterra's Equation
In references [l}l] to [lt-ﬂ » the integro-differential equation of Volterra is
considered. This equation occurs in the study of reactor dynamics, nonlinear
oscillators with hereditary terms, and in many other physical applications. The
scalar form of the equation is given by
nt
x(t) = - / a(t -t) g (x(1)) A_."-'( Coon . (L
o

In reference [44], a theorem dealing with the asymptotic stability of the null
solution of (1) is presented. In reference [47] » the existence and uniqueness
of the solutions of (1) are considered. In reference [45] » the solutions of (1)
are investigated as t ——» 00 for the case where a(t) is completely monotonic
over the interval [0, oo) and where g(x) is thought of as a "nonlinear spring"
term. The results in this reference, [45] , are weaker than the results in [44];

but the theorem proved in [45] brings "under one roof" several different notions
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of positivity: such as, Liapunov functions, completely monotonic functions, and
positive type kernel functions.

In reference Euﬂ » Kemp investigates the same nonlinear integro-differential
equation as given in (1), but for the n-dimensional case. The hypotheses in
Theorems 1 and 2, which are presented below, are directly generalized to higher
order and the corresponding Liapunov functions, V(t) and E(t) as given below,
are also directly generalized. The generalization of the results for (1) involves
some labor, but no new concepts.

We will now present the two theorems, with notes about their proofs, which

occur in [44] and [45].

Theorem 1, [44]

(H) If (i) a(t) is continuous over [Q, 00) ,
(ii) (- 1)K gK) (t) 2 0 over (0, 00), where K = 1, 2, 3 and a(K)
is the K-th derivative,
(11i) g(x) is continuous in ( -oo, o0),

(iv) xg(x) > 0, x # o,

X

v) 6(x) = / g(N) dN ———» 00 as ,x] —_— » OO0 ,
o

(vi) a(t) % a, (thus, no periodic solutions exist),
(v U(+) is any solution of (1) over [0,&),
(C) then,
(i)

lim U (t) = 0, j=0,1, 2. (2)
t —» OO0
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Outline of the Proof

First, the author in [44] , states and proves several lemmas dealing with the

2

boundedness of a, t 4, and t“ 4. Next, the following energy or Liapunov function

t
G(u(t)) + a(t) . 2
2 gu(t)) dr + 3)
o

t t 2
a(t -T) g(u(s)) ds it > 0.

is specified:

E(t)

N

o T

By integration by parts, the time derivative of E(X) relative to (1) yields

[" {'t 1 2 /st r' rt -l 2
E(t) = _(Q_L/ g (u(T)) d’t‘J - _l_j a(t-1) l:/ g(u(s)) ds J dt ,
2 o 240 T (4)
£ o.

From (3) and {4), we conclude that

G(u(t)) = E(t) < E0) = G (4,) ,
where wg = u(0). By hypothesis, it follows that

|u(e)| £ K (o) < 00 for [0, 00) . (5)

Finally, it can be shown that as 4y — 0, K(1L°) ———» 0; and also, it can be

shown that 4 and U —» O as t ——w 0o0. (The crux of this proof was the

use of a Liapunov function as described in (3) and (4).)

Theorem 2, [45]

(H) If (i) a(t) is continuous in [0, oo)
K (K)
(ii) (-1) a (t) 2 O forK=0,1, 2, ... and in (0,00),
(iii) g(x) is continuous in ( - @@, 00),

(iv) xg(x) > 0 (x # 0),
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X
V) G6(x) = L g(N) dN _— _» o0 as |x] —— o0,

i) a(t) # a,,

(vii) u(t) is any solution of (1) in [0, oo) ,

(C) then
J)
lim w (t) = 0, (j = 0,1, 2) (6)
t — 00
Notes about the Theorems
(1) 1In Theorem 1, only K =0, 1, 2, 3 in (ii) was required of a(t), not the
complete monotonicity as required here.
(2) The Liapunov function used in the proof of this theorem is given by
t t
V(t) = G(u(t)) + %f f a(T+ s) gu(t-T)) g (u(t - s)) dtds) (7))
o Yo

Where V. 2 0 if the second term is nonnegative. The physical interpretation
of V(t) is that the first term is the potential energy of the system and the
second term is the kinetic energy. The kinetic energy term will be nonnegative

if a (T + s) is a kernel of the positive type [48, P 270] on the square

0 <7t,s < t, for each t in (0, 00). Differentiating (7) with reference to (1),

yields

t ,t
\.l(t) =// a (T+s) g (u(t -T)) g (u(t - s)) dr ds. (8)
ovo

If - a (T + s) is a kernel of the positive type on 0 < T , 8 «& t for each

t in (0, 00), then V will be nonpositive.
(3) In [48, p 160], it is proved that a(t) satisfies the required conditions

in Item (2) if the following is satisfied:

o0
a(t) = exp{-g t} d (&), (9

(¢}
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"where X(00) <« o0 and X is nondecreasing on O <§ < oo.

(4) E(t) = v(t) if a(t) = ay for all t.

Qutline of the Proof of Theorem 2

We assume that V(t) and a(t) are defined as in (7) and (9). We then define ['(g »t)
by

t
/ exp {-g(t —’t’)} g (u(t)) dt, (10)
o

where (0 < g , t <& o0). Thus, we can write V and V in terms of /:

['cg, o

Qo
2
' G 1 , d >0, 11
() @(t)) + Ej 12 (g0 dx(§) o an

for 0 £ t <« o0, and

oo
. 2
V() =-/ £ 770 ax () <o, (12)
J o
for 0 £ ¢t <« oo. Equations (11) and (12) reduce to the inequality:

Gu(t)) € V(t) € V(O) =6 (Uy), (13)

for (0 £ t < o00). From the hypotheses and (13), we have ]U (t) | £ K < o0,
where K —» O as U, — 0. Similar results are obtained for I‘I and iI. Thus,

the conclusions of the theorem are valid.

Example 32, [49] Exponential Stability

In this "example" we will outline the paper of Bhatia, giving the important
definitions, theorems and examples.
The following linear, n-th order differential system is to be examined:

x = A(t) x. (D
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Also, the nonlinear system given below is analyzed:

x = A () x + £ (t, %, £(,0 = 0,

for t > O. The elements of A, aij(t)’ are defined and continuous on [0, OO).

Definition 1

"The solution x = 0 of (1) is said to be exponentially stable, if there exist

positive constants « and a such that for any solution x(t) of (1), x(to) X0 >

the inequality

Ix®] € x f|z) ew{-ac-cf
holds for t 2 to."

Let B(t) be a symmetric matrix defined and continuous on [0, OQ)O

Definition 2

"The quadratic form p. 3 B(t) x is positive definite if there exists a positive
constant b such that

X, B(t) x 2b x.x,t > 0."

T

Definition 3

"The quadratic form qug(t) x has property P if it is positive definite and if
it is positive definite and if the elements, bij(t)’ of B(t) are uniformly bounded
on [p, 00)."
Bhatia has proved that the necessary and sufficient conditions for B(t) to have
property P is that there exists constants bl and b2 such that
by Xpx € x B(t) x € b, x.x, t > O,
IfV = X B(t) x, where the elements of B have continuous derivatives on[p, OQ), then

the time derivative of V with respect to equation (1) is given by

. .
Vi = ET{E + ApB+ B A}E-
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Theorem 1, [50] (Malkin)

(H) If (i) x = 0, of (1), is exponentially stable,
(ii) the elements of A in (1) are uniformly bounded on LO, 00) s
(iii) z (t) is the fundamental matrix solution of (1),

(iv) _§Tg(t) X possesses property P,
(C) then for each C there exists a B such that xp B(t) x possesses property P and
00 _ _-1 _ _-1
V=x B(t) x = {1 (T) X () 5:} c (7) {K(T‘) X () xp 4T, (7)
t T

where V; = - x5 C(t) x .

Roseau improved Malkin's result in the following theorem.

Theorem 2, [514 52] (Roseau)

(H) 1f (i) x = 0 of (1) is exponentially stable,

(ii) matrix A (t ) satisfies the condition
s (8)
— -1 - ]
R(S, t) = A(’t)i_}g (t)xtt)} dr >0 as (s -t ) — 0,
t T T’
uniformly ons > t > o,
(iii) b C(t) x has property P,
(C) then there exists a quadratic form
V = x.B(t) x having property P and satisfying equation (7), where

L

Vl = - ')ET C(t) 5"

Example 1

Consider the scalar equation
. 2
r = (2t cos t -1 r,
where r(ty,) = r,. The general solution is

2

2
r(t) = ry exp isin t -sinty, -t + to} .
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thus, we have
2
|r(t)l £ Irole exp {- (t - t°)z st 7t
which proves that we have exponential stability. Malkin's formula, (7), gives

the Liapunov function

2 [%° 2 2
V=r expzz (sin T -—sint)-2(‘t-t)} d v,
t
where \.71 = -r and V satisfies
4 4

. 2
Thus, both V and V, have property P. Notice however that (2t cos t -1) is

neither bounded nor does Roseou's condition hold. That is,

]

R(s, t)

s
2 2
/ (Z’E'cos'L‘2 - 1) exp {sin'l‘ - sin t - (r- t)} d~
t

exp {sin s - sin t2 - (s - t)} -1,

where if s =t + 1/t , s -t —s o0 as t —» 00 but R(t + 1/t, t) —74->

However, the following relationship does hold:

-2 2
e ,rol exp {- (t - to)} < lr(t)l £ & ,ro ' exp { -(t - to)} >
t 2 to. This example points out the need for a different condition which must

be placed on the solutions of equation (1). Bhatia calls this condition

"exponential decay."

Definition 4

"The solutions of (1) are said to decay exponentially if there exists positive

constants a, X, b, @ such that every solution x(t), x(ty) = x,, of (1) satisfies
the inequalities

ol & om b e] & fxll = fagl) wew [ - e - e

for t > to."

O.

(9
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In the following five theorems the theory of exponential decay, as applied to

equation (1), is summarized.

Theorem 3, [49]

"The solutions of (1) decay exponentially if and only if there exists a
quadratic form

V = §T_B_(t) x such that V and \.711 both have property P."

Theorem 4, [49]

"The solutions of (1) decay exponentially if and only if there exists a
positive definite form V of order m with uniformly bounded coefficients such that

o
-V, is positive definite and has uniformly bounded coefficients."

Theorem 5, [49]

"If the solutions of (1) decay exponentially, then

(> -]

. T
k < f exp (zf Tr{é (s)} ds)% dv £ K, (10)
e L ‘
for t 2 O and for positive constants k, K."

Theorem 6, [49]

"If the solution x = 0 of (1) is exponentially stable and if there is a

positive constant K such that

o0
T
J exp zj Tr {A (s)} ds it % K, (11)
t

t

for t % O, then the solutions of (1) decay exponentially."
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Theorem 7, [49]

"A necessary and sufficient condition for the existence of a quadratic form V
such that V and \.71 both have property P is that the solution x = 0 of (1) be
exponentially stable and the condition (11) holds".

Bhatia now discusses a more general concept, which he calls '"'generalized

exponential decay" (g.e.d.).

Definition 5

"The solutions of (1) are said to exhibit g.e.d. if there exists a nondecreasing
function ¢(t) possessing a continuous derivative such that ﬁ(t) —» 00 as
t ——> o0, and if there exist four positive constants «, a, @, b such that every

solution x(t) of (1) satisfies the inequalities

lsoll @ e (- b [ - gl £ o] <
¢ 1l = eXP[-a [P - ;6<to>]} :

for t > ty."

Example 2

Consider the scalar equation

whose general solution is

r(t) = r, expi- (log (t + 1) - log (tgy + 1))} .
We have g.e.d. with X=a = @=Db =1 and #(t) = log (t + 1). But we do not
have exponential stability.

The following theorem gives a necessary and sufficient condition for g.e.d.

|

1

(1
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Theorem 8, [491

"The solutions of (1) exhibit g.e.d. if and only if there exist two quadratic
forms V = X, B(t) x and W = xp C(t) x
having property P and a nonnegative continuous function @(t) such that

w .
©(T)dr = + o0 and V; =- O(t) W."

Example 3

Consider the system

X =y, 5y = -x-2y
t
If we choose
2 2
V =x +y + 2 x vy,
t
then V has property P for t > 2, and
. 2 2
Vi =-2 (x + y + 3 x)
t t

y) and ©(t ) = 2/t. Notice that W has property

b

Pfort > 2, an%ja th= + o0o. Therefore the solutions of the system exhibit g.e.d.
t t

Note
The g.e.d. implies uniform stability, but it does not in general imply uniform
asymptotic stability since in linear systems uniform asymptotic stability is equivalent

to exponential stability.
The next theorem is concerned with the exponential stability of the solutions

of (1).
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Theorem 9, [49]
= 0 of (1) is exponentially stable if and only if there exists

"The solution x
a continuous function v(t, x) having the properties:
0) = 0 and there are positive constants a and b such that

2> 0,

£ v, ® b [x] ¢

~—

(1) v(t, O
a |Ix||

X) is locally lipschitzian in x,

(i1) v(t,
where C is a positive constant, we have

l{v (t+h,x +h A(t)_}_{_)—v(t,gg)}
h

(iii) and,
vk = lim sup
1 -0+

= g’

£ (¢, 0
/}511 < R, R a positive constant, and if

Note
The result in Theorem 9 can be extended to cover the nonlinear system

= i(t:?_():

x
if (1) and (ii) hold for some region

in v;*, A(t) x is replaced by £ (t, x).
The final theorem is a slight generalization of a theorem due to Perron.

0 of (1) is exponentially stable and the function

Theorem 10, [49]
"Suppose the origin x =
£(t, x) in (2) is continuous and satisfies the condition £(t, x) =0 ( //x/ ).
(Bhatia does mot require

Then the origin of system (2) is exponentially stable."

boundedness of the elements of A(t).)
RANDOM CONTRIBUTIONS TO STABILITY THEORY

In reference [53], Rosenbrock considers the nonlinear, nonautonomous system

(1)
defined by
x = £(x,t), £ (0, t) = 0.
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In analyzing this system, the above equation was replaced by é = A (x, t) x, and
conditions on the elements of A were determined to ensure stability. In reference
[54], the method used in [53] is applied to the n-th order differential equation

(n) (n-1)

X =f (x, X, ve. , X » t).

This equation is best analyzed if it is replaced by

x(n) + a, x(n-l) + ...+ a X + ajx = 0,
. n-1
a; = a;(x, X, ..., x( ) , t).
Rosenbrock states that if Al, ...,Arlare the roots of the equation
n n-1
X toa +...+a2>\+a1—0,
. (n-]-)
then knowledge of the{Ai(x, X, o0. 5 X , t) is equivalent to knowledge of the aj.

Consequently conditions on the aj which ensure stability can be replaced by conditions

(Hl%i; and this is what Rosenbrock does. The conditions which are given guarantee
that x = 0 is uniformly asymptotically stable. Some of the theorems proved by
Rosenbrock make use of Liapunov theory.
In reference [55], Rosenbrock studies the stability properties of the second
order system:
X o+ a, (x, x, t) x + aj (x, ﬁ, t) x = 0.
He obtains a slightly stronger result for this system in [5@.

(2) 1In reference [SQ], Brayton & Moser use Liapunov theory in their derivation of

stability criteria for nonlinear electrical networks.

(3) In reference [57], Hochstadt considers the second order system

e [ ] 2
y + P(t)y *+ ¢y = 0,

where P(t) is bounded and non-negative, and q is a real positive constant. When

the "minus sign' is used, he proves that unbounded solutions exist. When the
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"plus sign'" is used, he proves that only bounded solutions exist.

(4) 1In reference [58] , Bebernes and Vinh consider the linear time-varying system

given by:
ko= B+ &) x,
where x is an n-dimensional vector, and F and G are n x n-matrices defined on
[0, 00). The main result of the paper is as follows:
"if z (t) is the fundamental matrix solution of x = F(t) x, G(t) is continuous in
[0, 00), and if

= | X oo )| s < oo,
o

then every solution Y(t) of the original system can be expressed as Y(t) = X (t) c(t),

where ¢ is defined by

c =X & X <,

bounded in [0, 00), and the 1lim c(t) exists and is unique.’/
t —+» o0

(5) 1In referenc_e [59], Struble studies the system defined by:

x = A x + € f (x, t,€) ,
where x is an n-vector, A is a constant matrix and € is a scalar parameter. Struble
gives a more detailed picture of the approach of a solution of this system to its
equilibrium solution than that afforded in the usual stability theoremé.

(6) 1In reference [60:], LaSalle and Wonham give a summary of the stability papers

given at the 2nd International Conference on Automatic Control Theory. We give some
of their comments in the following discussion.

(a) Paper No. 103 - "On the Estimation of the Decaying time", H. Ling(Communist China)

the paper deals with Liapunov - like stability theory for compact manifolds. The

work is not necessarily new.
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(b) Paper No. 415 - '"Eventual Stability", J. P. LaSalle and R. J. Roth (U.S.A.).

A Liapunov-like theory has been developed in this paper for the new concept of
"eventual stabilities' and this theory can be applied to certain types of problems
when Liapunov theory is not applicable. The paper also contains a theorem on

the asymptotic stability of noncompact manifolds.

(c) Paper No. 324 '"Nonlinear Stability Analysis for Stricted Nonlinearities Using

the Second Method of Liapunov'" - H. Nour Eldin, the author considers nonlinear

control systems and uses Liapunov's second method for stability analysis. The systems
are Lur; type containing a single nonlinearity. The paper contains serious errors and
may not be too useful.

(d) Paper No. 420 "The Use of the technique of Linear Bounds for Applying the Direct

Method of Liapunov to a Class of Non-Linear and time - Varying Systems' - R. A. Nesbit (U.S.A

. the author shows how Liapunov's second method may be used to obtain estimates of a class

of functions for which a given controller will operate satisfactorily. This problem
arises when there is uncertainty as to the exact mathematical description of the forces
and dynamics of the system being controlled.
(7) 1In reference [61] » Wong gives two boundedness theorems for the second order system
defined by

u o+ a@t) £(u) g@) = o,
where f(u), is integrable and uf(u) > 0. The function g(u) is positive continuous.
(8) 1In reference [ﬁZJ » Zubov considers the system

x = £1(%5, ¥), 5 = f5(x, ¥),
where the f; are given in a region G of the x y - plane. The fj are real, continuous
and twice differentiable. Zubov assumes that the system has periodic solutions. He
proves many theorems dealing with the Liapunov stability and instability of the

periodic solutions of the system.
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(9) In reference [63], Matrosov considers the general case of nonsteady motion. In
the obtained criteria two Liapunov functions are used. For the case of nonuniform
asymptotic stability, the requirement of an infinitely small higher limit is removed,
which leads to the modification of theorems of Krasovskii, Zubov, and Reisig. The
application of the method to a nonstationary gyroscopic system with dissipation is
discussed.
(10) In reference [54], Matrosov studies nonlinear, nonautonomous systems through the
use of several '"Liapunov functions'. 1In this connection each V-function can satisfy
less rigid requirements than the one function occurring in the corresponding theorems
of Liapunov's second method. The work is based on Chaplygin's theory of differential
inequalities. The stability theorems obtained with the use of several V-functions
enables the author to construct tests for stability and instability which utilize the
properties of derivatives of the V - functions of higher order than the first. Matroso
considers tests with derivatives of first and second order.

Matrosov applies this theory to the problem of the stability in the sense of
Liapunov of bodies with variable moss, and to a second order nonlinear, nonautonomous
system of the form:

t e e s - 24 (xp 2
(sin + ) X + (sin - ) Xy, - sin (x1 + XX, )

X

- ct 2, , 2 3
(sint - € )x; +(int + € ) xy -sint (x) x + x3 ).

X2

(11) In reference [65] , Chzhan Sy-in considers problems on the stability of

motion over a finite interval of time. He considers the stability of the motion of
the following system during the finite interval [to, T] :

= P(t) x ,

%o

where P 1is a real, bounded, continuous matrix function of time . Liapunov functions

are used in all of the stability studies. Also, he considered systems with slowly




[66] to[69]
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changing coefficients; that is, P(t) = C + ¢ £(t), where € is a constant and e
is sufficiently small.

Chzhan Sy-In considers systems with continuously acting disturbances and

nonlinear systems. He gives‘Par;icular examples of the various systems.
Other references on finite time stability-are listed in the reference list,
(12) 1In [70&, Zubov considered the stability of the null solution in doubtful
cases. He gave several definitions of stability and used a Liapunov approach in
his analysis.
(13) 1In [7i], Razumikhin considered a linear time-varying system x = A(t) X, where
A is a continuous, bounded function of time. The Liapunov function which he used was

of the form, V = Xr B X , where B is constant. He also determined the region of

state space in which V is a Liapunov function of the above system. And, he extended
his work to nonlinear systems.

(14) 1In [72], Aizerman and Gantmakher studied the stability of periodic solutions

of x = £ (x, t) by applying non-Liapunov methods -- they used the variational

equations corresponding to the above system.,

(15) 1In [74] Livartorskii dealt with the stability of any solution of x = f(x, t),

where f is a discontinuous non-periodic function. New criteria for stability was
introduced. Liapunov functions were used to prove the stability theorems.

(16) 1In [75], Kalinin investigated periodic motions in the case of two zero roots

by using Liapunov methods.

(17) 1In [7@, Chetaev generalized the theorem of Poincare' and Liapunov to the general
case of stable motions of conservative systems. He used a Liapunov function given by
a Hermitian form. “

(18) 1n [77] to‘ [81] , the various authors studied the stability of the equilibrium

positions for discontinuous systems through the use of Liapunov methods.
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(19) 1In [§2] , Kuz'min considered the stability of mechanical systems by employing
quadratic forms as Liapunov functions.

(20) 1In (83] , Markhashov studied the critical cases of stability of stationary
motions (according to Liapunov) by employing certain simple facts from the theory of
continuous groups of transformations.

(21) 1In [84] s Klimushchev and Krasovskii proved that under the assumption of uniform

asymptotic stability of the degenerate first approximation system and the asymptotic
stability of a certain auxiliary system, a certain class of systems of differential
equations with a small parameter among its derivative terms was asymptotically stable.
The method of Liapunov was employed.

(22) 1In [Bi] » Regish discussed nonuniform stability of time-varying systems from a
function - space approach.

(23) In [86] » Krein studied certain problems dealing with characteristic values and
the Liapunov zones of stability.

(24) 1In LBi] , Hale and Stokeé considered the asymptotic stability of nonautonomous

systems of linear and nonlinear differential equations. The approach used was to
consider the integral representation of these systems and then apply certain differen-
tial inequalities.

(25) 1In [§é] and [89] » the authors applied Liapunov's second method to certain
physical applications:

linear and nonlinear stability problems in plasma physics and stability problems in
adaptive control systems, respectively.

(26) 1In [?O] , Tomovic' discussed many aspects of stability and sensitivity analysis.
They were:

control systems, types of disturbances, orbital stability, structual stability

(not the topological variety), conditionally stable systems, stabilityim finite
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time, and Liapunov's second method.
(27) 1In [92] , Jaffe applied Liapunov's second method to the optimal control problem.
In [_93] » Vogt defined relative stability and then studied this type of stability
in differential systems through the use of Liapunov functions. In [94] » Seifert
studied orbital stability and gave several examples to illustrate his work.
(28) In the references, [95] to [129] » we list some of the contributions to bounded-

ness and stability of nonlinear systems given by the Italian Mathematicians during the

years 1951-1961. 1In [95] and ]'_96], the asymptotic properties of the solutions of
X + y$ (¥) + x = O were studied. In [97, 98, 99] , the bounds and asymptotic
stability of the solutions of X + f(x) x + g(x) = O were discussed. In [100] s

the stable limit cycles of

x = y2 - (x + 1) {_(x - %+ a
2

.

y == X Y,
were determined. In [101] » these resuits were extended Lu the wmore gemeral system
of the form

X = P(yz)—(x + 1)( (x-l)2 + az s

- J
y = x y.

In [102] » the existence of a unique, stable limit cycle for
X + £ (x, %) x + gx} = 0

is proved. 1In [103] » the sufficient conditions for the null solution of

'}2+(tfc‘+q(x))§+x-a2x3=0

to be asymptotically stable were derived. The region of asymptotic stability was

also determined. 1In [104] , the existence of stable periodic solution of

%(t) + abx(t) + x (t-a) ~cx> (t-a) = 0
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was proved for certain values of a, b, c.
In [105], the stability of oscillations in large chambers (hydraulics problems)
was investigated.
In [106] s, the uniform boundedness of solutions of

X + £ (x, %) x + g(x) = h(t)
was considered. 1In [107, 108, 109] , the boundedness of solutions of

X + g + wx = £(t)
was investigated. In [110] , these results were extended to include the following
system:

X + (x, %) + gx) = £(r).
In [llﬂ] » the uniqueness and asymptotic stability of solutions of

X + f(t, x, X) x + g(x) = h(t)
for particular f's and g's was proved. In [112], upper bound criteria and instability

results were obtained for

o . - 77_
x + f(x)J x + x c COS{EL + a} ]

In [113] , stability conditions were derived for

X + x = € f (t, x, X) ,
for small €. 1In [}14] , by approximate methods, the existence of stable persisting
oscillations in an electrical circuit with an iron core and variable capacity was
proved. In [}15], the asymptotic behavior of the solutions of

t X + X = sinx
was investigated. In [116, 117, 113] » conditions for the behavior of solutions in
the neighborhood of a given bounded solution of

X

£ (t, x,y),

y

]

g (t, x, 9) ,

were derived. In [119], the existence of a stable limit cycle for
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x + f1 (x X) + g1 (%)

€ F]_(x: ;{a ys 'Y)

e

Yy o+ £ (5, ¥) + 8@

e Fz(x, ;{’ y’ &I
was investigated. In EIZQL the stable oscillations of a nonlinear electrical

network were studied. In [121], the uniform stability of solutions of

= A(t) x + £ (¢, %

ixe

was studied in comparison with the linear system

X

= A(t) «x.
In [122] » Conti studied the same systems and obtained results for boundedness,
stability and continuation of solutions.

The next list of Italian references deals with the asymptotic behavior of solu-
tions in the linear, time-varying case.{We lict the reference number and the equation

analyzed by the author.)

[123] : X + q(t] x = o.

[124] : alt) X + B(t) % + e(r) x = 0.
[125] : % + r(t) x = O.

[126, 127] x = A(t) =x.

{128, 129] x = A(t) x + a(t).

(29) In [130] , Putman considered the stability intervals of the Hill equations:

X + (a + £(t)) x = 0.
(30) 1In [131, 132] , Liapunov theory was applied to the construction of limit cycles
and the stability analysis of nonlinear feedback systems, respectively. 1In [135],
Liapunov theory was applied to the study of modern automatic control theory as applied
to the dynamics and control of nuclear rockets.

(31) 1In [134, 135] , Levin and Nohel investigated the global asymptotic behavior of

solutions in the case where the system has an integrable perturbation term. An example
considered by the authors was:

% + h(t, x, x) x + f(x) = g(t) ,
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where g(t) is the integrable perturbation term. The analysis was based on the second
method of Liapunov. 1In [136] , Yoshj z awa studied the relationships between the
limiting sets of solutions of a perturbed equation and the solutions of an unperturbed
equation through the use of Liapunov methods. He considered the system

x = F (t, 2 + G (t, x),
where the integrable perturbation term is G (t, x); he also considered the system
X + f(x) x + g(x) = h(t) ,

where his choice for the Liapunov function was

t ;
X
V (t, x, y) = expi{-2 ’h(t)' dt
o g(x)dx +
o
+ 1 y2 + 1 .
2
In [}3i] , Markus analyzed the system
x = H® + G (, 0 ,

where G 1is the perturbation term. His analysis resembled that of the above authors.

(32) In [133] to [14%] , the various authors analyzed the second order system

defined by

fl(xl, Xz) ’ fl (0, 01 0 ’

0,

»
N
I

fz(xl, x2) » £, (0, 0)
By restricting the Jacobian matrix of f1 and f, in various ways, the authors derived
sufficient conditions for the asymptotic stability in the large of the null solution,
investigated the orbital stability of bounded non-trivial solutions of the system,
and considered certain boundedness properties of the solutions. 1In [}4@], the above
results were extended to nonautonomous cases and to higher order systems. Liapunov

theory was used in some of proofs.
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(33) 1In [144] » Liapunov theory was used to study the stability of a typical spin

generator described by the following equations:

X = -ax + y
y =-x - by (l-kw,
v:7=b{a(1-w) -kyzz s

where a > 0, b ) O, ¢ and k are constants.

(34) 1In [145] » the author discussed the stable sets in a perturbed system with

small perturbations, where he assumed that the set was asymptotically stable in the
unperturbed system. (He defines stability of a set in the paper.) Existence of

periodic solutions were also discussed. The methods used in the analysis were the
asymptotic fixed-point theorem of Browder and Liapunov functions.

(35) 1In [148] » the asymptotic relationship between two systems of ordinary differential

equations was discussed. If two systems of differential equations are asymptotically

equivalent, a solution of one system tends to a given solution of the other, and vise-
versa. One system can be called perturbed and the other one unperturbed. The author's

perturbed system was

x = F(t,y,w) x + H(t, x, Y, W)
_‘,‘/ = L'(t9 X ¥ W) o,
w o= G (t: Y) + M (t’ X Y W)),

and the unperturbed system was

>.<=F(t,y,Wix’
y = 0,
w = G (t, vy).

Liapunov functions are used in the analysis. This work is an extension of the work in
[147J and [146] . 1In [146], the systems considered were:

+ p (t) ,

]
_)_{. =

1>
]

3.(_= + p (Y + £ (t, » ,

1>
"
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where f is the perturbation term.
(36) 1In [}AQ] , the author considered the boundedness of solutions of
x = £(x t),
through the use of Liapunov functions. He then extended his theory to include
the following system:
x = £(xt) + g (6,

where g is a perturbation term.

CONTRIBUTIONS TO THE FIELD OF STOCHASTIC STABILITY

Vorovich, [}SCD, was one of the earliest Russian authors who worked on the questio
of stability in a stochastic system.

Rosenbloom, [151], was the first to publish a paper in the U.S.A. on the subject
of stability of random systems. He considered first order differential equations
with random coefficients. For stationary Gaussian coefficients, for which the equation
ﬁay be integnated, Rosenbloom obtained a criterion for "stability in the mean'" based
upon the value of the spectral function at zero frequency.

Eringer and Samuels, [}52, 153, 154, 155], considered a type of asymptotic stabili

that they referred to as mean square stability, which they applied in the studies of
certain higher order linear differential equations with random coefficients. Their"
stability is defined only in terms of the second moments of the position components

of the state vector. They obtained explicit results for the case of Gaussian white-
noise coefficients. Their method of attack is based upon the integral equation associa

with the differential equation. In [156] » Bogdanoff and Kozin discuss and answer

some of the questions which we left unanswered in Eringer's and Samuels' work.

Bertram and Sarachik, [}57], defined stochastic versions of stability in the

phase space of random systems, relative to the three common modes of stochastic con-

vergence; that is, stability in probability)stability in the mean, and almost sure
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stability. They proved sufficient conditions for the stability in the mean for
general systems based upon the existence of Liapunov functions statisfying appropriate
properties. They obtained Rosenblooms results and also obtained explicit results
for higher order linear systems, where the coefficients were restricted to be bounded,
finite—state)random coefficients.

Kats and Krasovskii, [158, 159] , considered the problem of stability via second

method of Liapunov. They were interested in the construction of control functions that
would stabilize systems subjected to random noise. Their general stability conditions
and explicit results were of the same nature as those in [}57] .

In references [160, 161, 162, 163], the authors were mainly interested in stochastic

control theory. 1In [161], Krasovskii and Lidskii searched for an optimum Liapunov

function for a stochastic system. This Liapunov function guaranteed that the null
solution of the system was "asymptotically stable in probability". In ﬁ63] » Lidskii

is concerned with the study of control systems in which the transition process is
described by means of stochastic linear differential equations. The construction of

the Liapunov functions is accomplished by means similar to Chetaev's method. The system
is subjected to the action of a random effect of the Markov type, developed during the
control process, and also to disturbances which are random external impulsive disturbances.
The paper considered the establishment of the control action of a control element which
assume§ statigtical stability of a given motion with arbitrary initial deviations.
Liapunov methods aided in this determination.

In [164, 165] , Khas 'minskii considered the problem of the stability of a trajectory

of a Markov process, with a different definition of stability. The necessary and
sufficient condition for the stability of such processes is found, and it is an@logous
to the fundamental theorems of Liapunov's second method. The relationship between the
stability of a system of ordinary differential equations and the stability of stochastic

systems obtained by adding to the former a diffusion (random term) term is also investigated
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In higher order cases, a sufficiently large diffusion term will reduce the stability —
this need not be true for order two or less,

In [}6@), Kozin gave a simple,sufficient condition for almost sure stability (in the
Liapunov sense) of a class of linear systems with strictly stationary, metrically
transitive (i.e., satisfying the ergodic property) stochastic process coefficients.

The proof is based upon the fundamental Gronwall-Bellman lemma (see the "boundedness
section'" of this report), of differential equation theory, and on the strong law of
large numbers for strictly stationary stochastic processes.

In references EG?] to [}72], the work of Caughey, Gray, and others is reported.

In [16f] , Caughey made note of the many errors which occurred in reference [155 .

In ‘}68J , Caughey and Dienes showed that the behavior of linear dynamic systems, in

which a single parameter varies as a white-noise process, is an example of a continuous

multidimensional Markoff process. In [16§], Caughey and Gray were concerned with the

stability of the following system:

i={é+z<t>z x

where x 1is an n-vector, A is a constant matrix, and F is a stochastic matrix.
The analysis was performed by a Liapunov approach. Sufficient conditions were derived
for almost sure stability of the null solution. The results were generalized to
include a certain class of non-linear system; and sufficient conditions were obtained
to guarantee the almost sure boundedness of the forced oscillations of linear dynamic
systems with stochastic coefficients. Examples were given for each of the above
problems.

In [}71], Chelpanov studied stability boundaries for second order random systems.
The correlation times of the random parameters were assumed to be much smaller than
the natural times of the system; thus, the random signals were assumed to be 'white'.
In [}7?], Gray derived some sufficient stability conditions for linear systems with

random(non-white) coefficients. Gray used a generalized quadratic Liapunov function
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in his analysis. He also gave several examples.

In [}73}, Kats studied the problem of“étability in probability”of stochastic
systems in the large. A stability criterion based on the use of two Liapunov functions,
due to Chetaev, was given. The Theorem proved for stochastic systems is analogous
to that which was proved for ordinary differential equations by Barashin and Krasovskii.
Kats also considered an example of his theorem.

In [174, 175, 176, 177] , Bershad, Tuel and Derusso considered the stability of

linear systems with randomly time-varying coefficients. However, they did not use
Liapunov theory in their proofs.

In [178] » Vrkoc gave an estimate of the probability that the solutions of a
certain differential equation with random perturbations exceed a given bound.

In l}79] ,» Kushner considered some new theorems on the Liapunov theory of
stochastic stability. The results were for the continuous time case, only. Many
examples were given to {llustrate the several techniques for determining and using
stochastic Liapunov functions to obtain information about random trajectories. Also,
useful bounds on the probability of certain important events were derived.

In ElSOﬂ, Wonham established sufficient conditions for recurrence and positivity
for the diffusion process defined by a stochastic differential equation of Ito's
type. He obtained conditions for non-recurrence and nonpositivity. The conditions
required the existence of functions which closely resembled Liapunov functions. Thus,
he was often able to infer "weak' stability of a stochastic system by starting with
a Liapunov function for Lagrange stability of a corresponding deterministic system.
Using this technique he discussed linear systems and a nonlinear system of Lure' type.

In [18ﬂ » Bucy recognized the essential fact that the Liapunov functions in [158]
werg\nonnegative super martingaleéz and proved the first Liapunov theorem on almost
sure convergence (with discrete time and global conditions). The theorems in [179]
are based on sharper definitions and local conditions, and provide more useful informa-

tion concerning random trajectories, than in [18]] .
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OTHER EXTENSIONS OF LIAPUNOV THEORY

Partial Differential Equations. (Infinite Degree of Freedom Systems)

In the reference books, [182] and [183] , Zubov and Hahn both discussed the
stability of partial differential equations using a Liapunov function approach.,

In [}84} , Movchan considered the problem of stability of the "plane state"
of a thin plate of infinite 1ength)simp1y supported along two edges and subjected
to the action of constant forces in its plame. The direct method of Liapunov
was employed, thus causing the author to imtroduce an auxiliary metric space in
order to construct in it the corresponding functionals needed in the analysis.

In EBS s 186] , Morchan considered other systems with an infinite number

of degrees of freedom. 1In [}85], the system was a dynamical system where deformationms,

temperatures and stresses were also considered in the stability problem. In [186],
be considered a more general problem. For the processes considered he gave many
definitions of stability; and for each ome he proved éotheorem of the direct
method of Liapunov”on the properties of the functionals which are necessary and
sufficient for the existence of the particular type of stability or instability
being considered. In some cases these functionals can also be used to prove
uniqueness of solutions for certain partial differential equations.

In [}Bj], Kostandian considered the stability of the solution of the non-
linear equation of heat conduction in the space CL2 . He employed the ideas
contained in Liapunov's second method and arrived at sufficient conditions for
asymptotic stability of the equilibrium solution. He mentioned that in
references ﬁBS] and[}89] other methods of stability analysis were presented,

as well as extensive reference lists.,

In [}96], Rakhmatullina investigated the stability of a somewhat more general

problem than that studied in [187] . He used the methods which were first consider-.

ed in I}Ql] to study the following equation:

r 7y . ”* ST ~ -

1
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du ={Lu + f(t,g,u)},

o
e

where
Lu = div ZA(_}E)T &i_u}'*‘{l?_(?.{).r grad u} +
+ c(x) wu.

is an elliptic operator. One method used was that of "differential inequalities"
(see the“boundedness section”of the report), which are related to the Liapunov methods.

In [192], Slobodkin considered the stability of some simple systems from the
linear theory of elasticity. He used the direct method of Liapunov to establish
his results. The Liapunov funtional used in the analysis was related to the total

energy of the system being considered.

In [}93, 194, 195, 19@] » Lakshmikantham considered the problem of stability of

solutions of parabolic equations and certain functional equations by employing the
direct method of Liapunov. He obtained a number of results, in a unified way, by
using these techniques. For instance, he found the stability of the solutions, and

investigated certain examples. He also indicated that Liapunov - like vector

functions were useful in some cases.

Differential - Difference Equations and Functional Eguations

In reference DS%], Hahn considered some of the results from the stability
studies of systems with a time-13g.

In reference [19]] » Krasovskii considered the general definitions and theorems
of Liapunov's second method for equations with time-lags. The systems considered in
his book were linear systems with time-lag, nonlinear systems, integrodifferential
equations with time lags, and systems with persistent disturbances. He also gave
methods to construct the Liapunov functionals for special systems.

In reference [}9@], Bellman and Cooke considered the field of differential-

difference equations in great detail. Some of the topics covered which are
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pertinent to this report are: small perturbation theory, definitions of various
types of stability, existence theorems, uniqueness theorems, asymptotic behavior

of solutions, stability theorems, time-varying, time-lag systems, Liapunov

functions and functionals, and a reference list, which will not be repeated

here. In reference [199], Bellman and Danskin gave an earlier survey of the

field of differential-difference equations, the survey being interested mainly
in stability.

In [200, 201], Razumikhin considered the stability of systems with time-
lag by employing the direct method of Liapunov. In [?01], he obtained his
results by considering the first approximations for the systems. Also, he
applied his theory to the following practical example, from [202]:

X(t) + apx(t) + ayx(t) + azx(t-7T) = O,

which describes the transient processes in a certain automatic control system.
In [203], Shimanov proved that the known theorems of Liapunov and Chetaev
concerning stability can be extended to systems with retardation. Also, he
gave a criterion of instability in the first approximation of the motion of
systems with retardation. The equations of perturbed motion which he studied
qre given by
() = £ (x(t +T), 1),

where £ (0, t)

0. These equations are called "equations with after-effects'.

In [204], Shimanov gave a practical method for solving the problem of the
undisturbed motion of a system with time-lag for the critical case when one of
the roots is zero. Liapunov theory was used in the analysis. The author consider-
ed two particular second-order nonlinear, time-lag systems as examples for his

procedure.

In [205], Popov_and Halanay considered an application of Popov's method

(see "Control Section" of this report) to the problem of stability of some systems
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with lagging arguments. The form of the equations studied are as follows:

Be) = & x®) +Bx -1 + | fle ol

-

ETE,

where A, B, L, ¢ are constants and ¢ and & are scalars. A special case of
this equation was studied in [?OQJ.

In [209], Wang and Bandy have shown that time-delayed variables can enter

into distributed - parameter processes due to the presence of both internal and

external delayed action energy sources. The dynamic behavior of such processes

were described by a system of partial differential-difference equations. The

authors paid particular attention to the class of equations which admitted

product solutions so that their time-dependent equations were reducible to a

denumerable infinity of ordinary differential-difference equations. Motivated

by the theory developed in [207]and[208ﬂ, the authors gave an extended version

of Liapunov's stability theory for such systems. Its application was illustrated

by the study of a one-dimensional diffusion process with non-linear delayed-action

sources. In [210], Wang considered the asymptotic stability of the equilibrium
states of a nonlinear diffusion system with time delays, He also gave a physical

erpretation of his problem; namely, an automatically controlled furnace with

time-delays, used for heat-treatment of certain materials,

In [Zli], Hale considered the existence of periodic and almost periodic
solutions of linear nonhomogeneous functional-differential equations under a
hypothesis of uniform asymptotic stability for homogeneous systems,(as defined
in his paper) He unified and generalized the results which others had obtained
for differential-difference equations by a systematic use of a special Liapunov
functional. He considered, as applications, two specific types of nonlinear
systems. Also, Hale gave an extensive bibliography: concerning the above

problems.
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In [21@], Hale discussed linear functional-differential equations with
constant coefficients. The topics discussed were: eigenspaces, use of the
adjoint equation, perturbation theorems, and the geometric theory of
differential-difference equations.

In [213] , Hale pointed out that Krasovskii proved, in [}97], that the
stability theorems of Liapunov and their converses can be extended to
differential equations with delayed arguments if the equations are discussed
in a space of continuous functions C, over a finite interval. These theorems
hold if the Liapunov functions are also defined over this space C. These
yield necessary and sufficient conditions for stability and thus are not too
useful for applications. For this reason, Hale determined conditions, by
means of Liapunov functionals, which were only sufficient for stability. This
took the form of generalizations of the work of LaSalle,[Zlé], for ordinary
differential equations. Hale considered as an examble a problem due to Levin
and Nohel, discussed earlier in this section.

In ‘_215:[ , Hale continued the work which he discussed in [207] and [216]
to a more general type of equation, namely, a functional-differential equation.
Liapunov functionals were used throughout the discussion.

In [211], Hale continued his discussion on the use of Liapunov functionals
to investigate asymptotic stability of a certain class of functional-differential
equations.

In [21@ , Seifert gave stability conditions on the bounded solutions of
systems with "almost periodic" time dependence which will guarantee separation,
defined in the paper, of one such solution with respect to the others. Then, he
obtained, in terms of such stability conditions, an existence theorem for almost

periodic solutions of almost periodic systems.
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In [21Q], Seifert used Liapunov functions to derive sufficient conditions
for uniform stability of almost-periodic solutions of almost-periodic systems

of differential equations.

In [220] and [221] » Stokes and Jones used fixed-point theorems to study the

problems of stability of nonlinear systems and functional-differential systems,
respectively.

In [?22], Taam obtained conditions for certain nonlinear differential
equations in a Banach space to possess a unique almost periodic solution which
is positively asymptotically stable and negatively unstable.

In[?23], Jones studied the existence of periodic motions in Banach Spaces
and theirapplications to functional-differential equations. He employed the
asymptotic fixed point theorems in his work; and he also considered many
interesting physical systems as examples of his theory.

In [?2@], Stokes proved that if thé associated linear variational functional-
differential equation has only one non-trivial one-parameter family of periodic solue:
tions, and all the remaining solutions tend to zero, than the limit cycle of the
autonomous functional-differential equation is orbitally asymptotically stable;
with asymptotic phase.

]
In [?ZQ], Hale and Perello took another step in the geometric direction to

extend results known for ordinary differential equations to nonlinear functional-
differential equations of the finite lag type. They used Liapunov functionals
in some of their work.

In [?2@?, Hale proved sufficient conditions for stability and instability
of autonomous functional-differential equations. Liapunov functionals were used.
Many practical examples were considered:

stability of a circulating fuel nuclear reactor, Volterra's integrodifferential
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equation, viscoglasticity problems, and many others.

Topological Dynamics and Generalized

Dynamic Systems

Under this "item" we will just list some of the references in the field
which either define what a generalized dynamic system really is, or which make
use of Liapunov functions in the study of stability in generalized dynamic
systems. The references are numbered from [227] to [239]. Also, in
references [}82] and [}83], we can find discussions on the stability of

invariant sets of certain dynamic systems.
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